đề thi vào lớp 10 môn toán
Chia sẻ bởi Võ Minh Nhí |
Ngày 19/10/2018 |
38
Chia sẻ tài liệu: đề thi vào lớp 10 môn toán thuộc Tiếng Anh 9
Nội dung tài liệu:
CÂU LẠC BỘ-HỘI NHÓM TALKATIVE
BAN GIÁO DỤC TRI THỨC
BỘ ĐỀ TUYỂN SINH VÀO LỚP 10
TOÁN
Biên soạn: GV Huỳnh Thảo Ngọc
ĐỀ SỐ 3
Câu 1: Giải phương trình và hệ phương trình sau:
a) x4 + 3x2 – 4 = 0
b)
Câu 2: Rút gọn các biểu thức:
a) A =
b) B = ( với x > 0, x 4 ).
Câu 3: a) Vẽ đồ thị các hàm số y = - x2 và y = x – 2 trên cùng một hệ trục tọa độ.
b) Tìm tọa độ giao điểm của các đồ thị đã vẽ ở trên bằng phép tính.
Câu 4: Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O;R). Các đường cao BE và CF cắt nhau tại H.
a) Chứng minh: AEHF và BCEF là các tứ giác nội tiếp đường tròn.
b) Gọi M và N thứ tự là giao điểm thứ hai của đường tròn (O;R) với BE và CF. Chứng minh: MN // EF.
c) Chứng minh rằng OA EF.
Câu 5: Tìm giá trị nhỏ nhất của biểu thức:
P =
ĐỀ SỐ 4
Câu 1: a) Trục căn thức ở mẫu của các biểu thức sau: ; .
b) Trong hệ trục tọa độ Oxy, biết đồ thị hàm số y = ax2 đi qua điểm M (- 2; ). Tìm hệ số a.
Câu 2: Giải phương trình và hệ phương trình sau:
a)
b)
Câu 3: Cho phương trình ẩn x: x2 – 2mx + 4 = 0 (1)
a) Giải phương trình đã cho khi m = 3.
b) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: ( x1 + 1 )2 + ( x2 + 1 )2 = 2.
Câu 4: Cho hình vuông ABCD có hai đường chéo cắt nhau tại E. Lấy I thuộc cạnh AB, M thuộc cạnh BC sao cho: (I và M không trùng với các đỉnh của hình vuông ).
Chứng minh rằng BIEM là tứ giác nội tiếp đường tròn.
Tính số đo của góc
Gọi N là giao điểm của tia AM và tia DC; K là giao điểm của BN và tia EM. Chứng minh CK BN.
Câu 5: Cho a, b, c là độ dài 3 cạnh của một tam giác. Chứng minh:
ab + bc + ca a2 + b2 + c2 < 2(ab + bc + ca ).
ĐỀ SỐ 5
Câu 1: a) Thực hiện phép tính:
b) Trong hệ trục tọa độ Oxy, biết đường thẳng y = ax + b đi qua điểm A( 2; 3 ) và điểm B(-2;1) Tìm các hệ số a và b.
Câu 2: Giải các phương trình sau:
a) x2 – 3x + 1 = 0
b)
Câu 3: Hai ô tô khởi hành cùng một lúc trên quãng đường từ A đến B dài 120 km. Mỗi giờ ô tô thứ nhất chạy nhanh hơn ô tô thứ hai là 10 km nên đến B trước ô tô thứ hai là 0,4 giờ. Tính vận tốc của mỗi ô tô.
Câu 4: Cho đường tròn (O;R); AB và CD là hai đường kính khác nhau của đường tròn. Tiếp tuyến tại B của đường tròn (O;R) cắt các đường thẳng AC, AD thứ tự tại E và F.
a) Chứng minh tứ giác ACBD là hình chữ nhật.
b) Chứng minh ∆ACD ∆CBE
c) Chứng minh tứ giác CDFE nội tiếp được đường tròn.
d) Gọi S, S1, S2 thứ tự là diện tích của ∆AEF, ∆BCE và ∆BDF. Chứng minh: .
Câu 5: Giải phương trình:
ĐỀ SỐ 6
Câu 1: Rút gọn các biểu thức sau:
a) A =
b) B = ( với a > 0, b > 0, a b)
Câu 2: a) Giải hệ phương trình:
b) Gọi x1, x2 là hai nghiệm của phương trình: x2 – x – 3 = 0. Tính giá trị biểu thức: P = x12 + x22.
Câu 3:
a) Biết đường thẳng y = ax + b đi qua điểm M ( 2; ) và song song với đường thẳng 2x + y = 3. Tìm các hệ số
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Võ Minh Nhí
Dung lượng: |
Lượt tài: 0
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)