Đề thi thử đại học môn toán 2012
Chia sẻ bởi Nguyễn Anh Tuấn |
Ngày 14/10/2018 |
103
Chia sẻ tài liệu: Đề thi thử đại học môn toán 2012 thuộc Các công cụ toán học
Nội dung tài liệu:
SỞ GD & ĐT PHÚ THỌ
TRƯỜNG THPT THANH THUY
ĐỀ THI THỬ ĐẠI HỌC NĂM HỌC 2010-2011
Môn thi : TOÁN ; Khối : A
Thời gian làm bài 180 phút, không kể thời gian giao đề
PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm):
Câu I (2 điểm)
Cho hàm số y = (C)
1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C)
2. Tìm các giá trị của m để đường thẳng (dm) y = x +m cắt © tại hai điểm phân biệt A và B sao cho AB = 2..
Câu II (2 điểm)
1. Giải phương trình:.
2.Giải hệ phương trình
Câu III (1 điểm) Tính tích phân: .
Câu IV (1 điểm)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có CD = 2a ; hình chiếu của S lên mp(ABCD) là trọng tâm H của tam giác ABD. Biết góc hợp bởi cạnh bên SC và mặt đáy ABCD bằng 300, kgoảng cách từ H đến mp(SCD) bằng . Tính thẻ tích khối chóp S.ABCD.
Câu V (1 điểm)
Cho bốn số dương a, b, c, d thỏa mãn a+b+c+d=1.
Chứng minh rằng: .
II. PHẦN RIÊNG (3 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B).
A. Theo chương trình Chuẩn:
Câu VI.a (2 điểm)
1. Trong mặt phẳng toạ độ Oxy, viết PT các cạnh của tam giác ABC biết hai trung tuyến BM : y - 3 = 0, CN : x+y-2=0, đường cao AH: 2x- y+3 = 0.
2. Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCD có A(-1;0;1), B(1;2;3) và C đường thẳng (d1) : , D đường thẳng (d2) : , G đường thẳng (d3) : , với G là trọng tâm của tứ diện. Tính khoảng cách giữa hai đường thẳng AD và BC.
Câu VIIa(1 điểm)
Tìm quĩ tích các điểm biểu diễn số phức w = z - 1 +i biết .
B. Theo chương trình Nâng cao:
Câu VI.b (2 điểm)
1. Trong mặt phẳng toạ độ Oxy cho đường tròn (C): x2+y2-12x-4y+36=0.Viết phương trình đường tròn tiếp xúc với hai trục toạ độ và tiếp xúc ngoài với đường tròn (C).
2. Trong không gian Oxyz cho hai điểm M(1;1;1) và A(2;1;1). Viết phương trình mặt phẳng (P) đi qua M, hợp với đường thẳng (d): một góc sao cho , đồng thời khoảng cách từ A đến (P) bằng
C©u VII.b (1 điểm) .Tìm quĩ tích các điểm biểu diễn số phức w sao cho phương trình
Z2-2(1+i)z+w-i+1 = 0 có hai nghiệm z1, z2 thoả mãn: .
………………… …..………………..Hết…………………………………….
TRƯỜNG THPT THANH THUY
ĐỀ THI THỬ ĐẠI HỌC NĂM HỌC 2010-2011
Môn thi : TOÁN ; Khối : A
Thời gian làm bài 180 phút, không kể thời gian giao đề
PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm):
Câu I (2 điểm)
Cho hàm số y = (C)
1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C)
2. Tìm các giá trị của m để đường thẳng (dm) y = x +m cắt © tại hai điểm phân biệt A và B sao cho AB = 2..
Câu II (2 điểm)
1. Giải phương trình:.
2.Giải hệ phương trình
Câu III (1 điểm) Tính tích phân: .
Câu IV (1 điểm)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có CD = 2a ; hình chiếu của S lên mp(ABCD) là trọng tâm H của tam giác ABD. Biết góc hợp bởi cạnh bên SC và mặt đáy ABCD bằng 300, kgoảng cách từ H đến mp(SCD) bằng . Tính thẻ tích khối chóp S.ABCD.
Câu V (1 điểm)
Cho bốn số dương a, b, c, d thỏa mãn a+b+c+d=1.
Chứng minh rằng: .
II. PHẦN RIÊNG (3 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B).
A. Theo chương trình Chuẩn:
Câu VI.a (2 điểm)
1. Trong mặt phẳng toạ độ Oxy, viết PT các cạnh của tam giác ABC biết hai trung tuyến BM : y - 3 = 0, CN : x+y-2=0, đường cao AH: 2x- y+3 = 0.
2. Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCD có A(-1;0;1), B(1;2;3) và C đường thẳng (d1) : , D đường thẳng (d2) : , G đường thẳng (d3) : , với G là trọng tâm của tứ diện. Tính khoảng cách giữa hai đường thẳng AD và BC.
Câu VIIa(1 điểm)
Tìm quĩ tích các điểm biểu diễn số phức w = z - 1 +i biết .
B. Theo chương trình Nâng cao:
Câu VI.b (2 điểm)
1. Trong mặt phẳng toạ độ Oxy cho đường tròn (C): x2+y2-12x-4y+36=0.Viết phương trình đường tròn tiếp xúc với hai trục toạ độ và tiếp xúc ngoài với đường tròn (C).
2. Trong không gian Oxyz cho hai điểm M(1;1;1) và A(2;1;1). Viết phương trình mặt phẳng (P) đi qua M, hợp với đường thẳng (d): một góc sao cho , đồng thời khoảng cách từ A đến (P) bằng
C©u VII.b (1 điểm) .Tìm quĩ tích các điểm biểu diễn số phức w sao cho phương trình
Z2-2(1+i)z+w-i+1 = 0 có hai nghiệm z1, z2 thoả mãn: .
………………… …..………………..Hết…………………………………….
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Anh Tuấn
Dung lượng: 67,00KB|
Lượt tài: 4
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)