Đề thi HSG Trường Môn Tin năm 2013-2014
Chia sẻ bởi Hồ Sỹ Hoàng |
Ngày 27/04/2019 |
61
Chia sẻ tài liệu: Đề thi HSG Trường Môn Tin năm 2013-2014 thuộc Tin học 10
Nội dung tài liệu:
SỞ GD & ĐT NGHỆ AN
TRƯỜNG THPT QUỲNH LƯU 2
ĐỀ THI CHỌN HỌC SINH GIỎI TRƯỜNG LỚP 10
NĂM HỌC 2013-2014
Môn thi: TIN HỌC
Thời gian: 150 phút (không kể thời gian giao đề)
Câu 1 (6 điểm):
Bố của Nam là cán bộ địa chính, nên thường xuyên phải đi đo đạc ruộng đất. Với những thửa ruộng hình chữ nhật thì bố Nam dễ dàng tính ra diện tích. Nhưng một số thửa ruộng lại có hình thang nên việc tính toán gặp khó khăn hơn.
Yêu cầu:
- Em hãy giúp bạn Nam viết một thuật toán giúp bố bạn ấy chỉ cần đo độ dài các cạnh (cạnh đáy lớn, đáy bé, chiều cao) rồi nhập vào máy sẽ cho ra diện tích của thửa ruộng đó.
Câu 2 (6 điểm):
Em trai của bạn Lan năm nay đang học lớp 6. Nhưng em ấy không biết các bước để giải phương trình bậc nhất một ẩn (dạng ax + b = 0).
Yêu cầu: - Em hãy giúp Lan viết ra một thuật toán để em của Lan dựa vào đó thực hiện các bước/sơ đồ để tìm ra được nghiệm của mọi phương trình bậc nhất.
- Em hãy nêu ra các bộ dữ liệu (test) để thử tính đúng đắn của thuật toán đó.
Câu 3 (5 điểm):
Trong một cuộc thi Xây tháp có yêu cầu sử dụng các con Rôbốt để lựa chọn phiến đá dùng cho việc xây tháp. Các phiến đá đều có hình dạng là hình tam giác (với độ dài 3 cạnh là a, b, c). Để xây được tháp cao và cân xứng thì chỉ nên lựa chọn các phiến đá là hình tam giác cân để xây tháp mà thôi.
Yêu cầu: - Em hãy viết thuật toán kiểm tra giúp con Rôbốt xem phiến đá nào có dạng là hình tam giác cân, với chiều dài 3 cạnh được nhập vào. Nếu là tam giác cân thì thông báo “Có”, nếu không phải thì thông báo “Không”.
- Em hãy nêu ra các bộ dữ liệu (test) để thử tính đúng đắn của thuật toán.
Câu 4 (3 điểm):
Năm học 2013-2014 Đoàn trường có tổ chức cuộc thi “Người dẫn chương trình”, mỗi thí sinh đều có một SBD (số báo danh) (SBD: từ 1 đến 42) và tham gia qua 3 vòng thi.
Điểm mỗi vòng thi được lưu trong một dãy số:
- Vòng 1: Lưu trong dãy số A: A1, A2, A3, … A42 (Ai điểm của thí sinh có SBD:i)
- Vòng 2: Lưu trong dãy số B: B1, B2, B3, … B42 (Bi điểm của thí sinh có SBD:i)
- Vòng 3: Lưu trong dãy số C: C1, C2, C3, … C42 (Ci điểm của thí sinh có SBD:i)
SBD của các thí sinh trong toàn bộ cuộc thi không thay đổi.
Để trao giải Đoàn trường cần chọn ra 3 thí sinh có tổng điểm của 3 vòng thi đạt cao nhất để trao giải (Nhất, Nhì, Ba)
Yêu cầu: Em hãy giúp Đoàn trường xây dựng một thuật toán để tìm xem bạn nào (SBD của thí sinh) được giải Nhất, Nhì, Ba.
Chú ý: Nếu hai bạn có tổng điểm bằng nhau, thì bạn có SBD lớn hơn sẽ đạt giải cao hơn.
--------Hết--------
Học sinh nêu được ý tưởng vẫn được cho điểm/ Giám thị không giải thích gì thêm
TRƯỜNG THPT QUỲNH LƯU 2
ĐỀ THI CHỌN HỌC SINH GIỎI TRƯỜNG LỚP 10
NĂM HỌC 2013-2014
Môn thi: TIN HỌC
Thời gian: 150 phút (không kể thời gian giao đề)
Câu 1 (6 điểm):
Bố của Nam là cán bộ địa chính, nên thường xuyên phải đi đo đạc ruộng đất. Với những thửa ruộng hình chữ nhật thì bố Nam dễ dàng tính ra diện tích. Nhưng một số thửa ruộng lại có hình thang nên việc tính toán gặp khó khăn hơn.
Yêu cầu:
- Em hãy giúp bạn Nam viết một thuật toán giúp bố bạn ấy chỉ cần đo độ dài các cạnh (cạnh đáy lớn, đáy bé, chiều cao) rồi nhập vào máy sẽ cho ra diện tích của thửa ruộng đó.
Câu 2 (6 điểm):
Em trai của bạn Lan năm nay đang học lớp 6. Nhưng em ấy không biết các bước để giải phương trình bậc nhất một ẩn (dạng ax + b = 0).
Yêu cầu: - Em hãy giúp Lan viết ra một thuật toán để em của Lan dựa vào đó thực hiện các bước/sơ đồ để tìm ra được nghiệm của mọi phương trình bậc nhất.
- Em hãy nêu ra các bộ dữ liệu (test) để thử tính đúng đắn của thuật toán đó.
Câu 3 (5 điểm):
Trong một cuộc thi Xây tháp có yêu cầu sử dụng các con Rôbốt để lựa chọn phiến đá dùng cho việc xây tháp. Các phiến đá đều có hình dạng là hình tam giác (với độ dài 3 cạnh là a, b, c). Để xây được tháp cao và cân xứng thì chỉ nên lựa chọn các phiến đá là hình tam giác cân để xây tháp mà thôi.
Yêu cầu: - Em hãy viết thuật toán kiểm tra giúp con Rôbốt xem phiến đá nào có dạng là hình tam giác cân, với chiều dài 3 cạnh được nhập vào. Nếu là tam giác cân thì thông báo “Có”, nếu không phải thì thông báo “Không”.
- Em hãy nêu ra các bộ dữ liệu (test) để thử tính đúng đắn của thuật toán.
Câu 4 (3 điểm):
Năm học 2013-2014 Đoàn trường có tổ chức cuộc thi “Người dẫn chương trình”, mỗi thí sinh đều có một SBD (số báo danh) (SBD: từ 1 đến 42) và tham gia qua 3 vòng thi.
Điểm mỗi vòng thi được lưu trong một dãy số:
- Vòng 1: Lưu trong dãy số A: A1, A2, A3, … A42 (Ai điểm của thí sinh có SBD:i)
- Vòng 2: Lưu trong dãy số B: B1, B2, B3, … B42 (Bi điểm của thí sinh có SBD:i)
- Vòng 3: Lưu trong dãy số C: C1, C2, C3, … C42 (Ci điểm của thí sinh có SBD:i)
SBD của các thí sinh trong toàn bộ cuộc thi không thay đổi.
Để trao giải Đoàn trường cần chọn ra 3 thí sinh có tổng điểm của 3 vòng thi đạt cao nhất để trao giải (Nhất, Nhì, Ba)
Yêu cầu: Em hãy giúp Đoàn trường xây dựng một thuật toán để tìm xem bạn nào (SBD của thí sinh) được giải Nhất, Nhì, Ba.
Chú ý: Nếu hai bạn có tổng điểm bằng nhau, thì bạn có SBD lớn hơn sẽ đạt giải cao hơn.
--------Hết--------
Học sinh nêu được ý tưởng vẫn được cho điểm/ Giám thị không giải thích gì thêm
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Hồ Sỹ Hoàng
Dung lượng: |
Lượt tài: 0
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)