DE THI HSG 8 CAP TINH
Chia sẻ bởi Đỗ Như Tính |
Ngày 18/10/2018 |
22
Chia sẻ tài liệu: DE THI HSG 8 CAP TINH thuộc Ngữ văn 6
Nội dung tài liệu:
Đề thi chọn học sinh giỏi thcs cấp tỉnh
Năm học 2008 - 2009
Môn: Toán 8
Thời gian: 150 phút (Không kể thời gian giao đề)
Câu 1 (2 điểm)
a/ Phân tích đa thức thành nhân tử: x3 - 7x - 6
b/ Giải phương trình: x4 - 30x2 + 31x - 30 = 0
Câu 2 (2 điểm)
a/ Cho đa thức f(x) = ax2 + bx + c, với a, b, c là các số hữu tỉ. Biết rằng f(0), f(1), f(2) có giá trị nguyên. Chứng minh rằng 2a, 2b có giá trị nguyên.
b/ Tìm giá trị nhỏ nhất của: A =
Câu 3 (2 điểm)
a/ Chứng minh rằng với 4 số bất kỳ a, b, x, y ta có
(a2 + b2)(x2 + y2) (ax + by)2
b/ Chứng minh rằng: x3m+1 + x3n+2 + 2 chia hết cho x2 + x + 1 với mọi số tự nhiên m,n.
Câu 4 (3 điểm)
Cho tam giác ABC có 3 góc nhọn với 3 đường cao AA’, BB’, CC’.
Gọi H là trực tâm của tam giác ABC. Chứng minh rằng:
Câu 5 (1 điểm)
Cho 3 số dương a, b, c có tổng bằng 1. Chứng minh rằng:
Đáp án đề thi chọn học sinh giỏi THCS cấp tỉnh
Năm học 2007 - 2008
Môn: Toán 8
Câu 1
a/ Phân tích đa thức thành nhân tử:
x3 - 7x - 6 = x3 - 4x - 3x - 6
= x(x2 - 22) - 3(x + 2) (1/2 điểm)
= x(x + 2)(x - 2) - 3(x + 2)
= (x + 2)(x2 - 2x - 3)
= (x + 2)(x2 - 1 - 2x - 2)
= (x + 2) [(x - 1)(x + 1) - 2(x + 1)]
= (x + 2)(x + 1)(x - 3) (1/2 điểm)
b/ x4 -30x2 + 31x - 30 = 0 <=> (x2 - x + 1)(x - 5)(x + 6) = 0 (*)
Vì x2 - x + 1 = (x - 1/2)2 + 1/4 > 0 (1/2 điểm)
=> (*) <=> (x - 5)(x + 6) = 0 <=> (1/2 điểm)
Câu 2
a/ Có f(0) = c; f(1) = a + b + c; f(2) = 4a + 2b + c là các số nguyên (1/2 điểm)
=> a + b + c - c = a + b nguyên => 2a + 2b nguyên => 4a + 2b nguyên
=> (4a + 2b) - (2a + 2b) = 2a nguyên => 2b nguyên
Vậy 2a, 2b nguyên.
b/ Có A = (1/2 điểm)
Đặt y = => A = y2 – 2y + 3 = (y – 1)2 + 2 2 (1/2 điểm)
=> min A = 2 => y = 1 => x = 2
Vậy min A = 2 khi x = 2 (1/2 điểm)
Câu 3
a/ Ta có (a2 + b2)(x2 + y2)
Năm học 2008 - 2009
Môn: Toán 8
Thời gian: 150 phút (Không kể thời gian giao đề)
Câu 1 (2 điểm)
a/ Phân tích đa thức thành nhân tử: x3 - 7x - 6
b/ Giải phương trình: x4 - 30x2 + 31x - 30 = 0
Câu 2 (2 điểm)
a/ Cho đa thức f(x) = ax2 + bx + c, với a, b, c là các số hữu tỉ. Biết rằng f(0), f(1), f(2) có giá trị nguyên. Chứng minh rằng 2a, 2b có giá trị nguyên.
b/ Tìm giá trị nhỏ nhất của: A =
Câu 3 (2 điểm)
a/ Chứng minh rằng với 4 số bất kỳ a, b, x, y ta có
(a2 + b2)(x2 + y2) (ax + by)2
b/ Chứng minh rằng: x3m+1 + x3n+2 + 2 chia hết cho x2 + x + 1 với mọi số tự nhiên m,n.
Câu 4 (3 điểm)
Cho tam giác ABC có 3 góc nhọn với 3 đường cao AA’, BB’, CC’.
Gọi H là trực tâm của tam giác ABC. Chứng minh rằng:
Câu 5 (1 điểm)
Cho 3 số dương a, b, c có tổng bằng 1. Chứng minh rằng:
Đáp án đề thi chọn học sinh giỏi THCS cấp tỉnh
Năm học 2007 - 2008
Môn: Toán 8
Câu 1
a/ Phân tích đa thức thành nhân tử:
x3 - 7x - 6 = x3 - 4x - 3x - 6
= x(x2 - 22) - 3(x + 2) (1/2 điểm)
= x(x + 2)(x - 2) - 3(x + 2)
= (x + 2)(x2 - 2x - 3)
= (x + 2)(x2 - 1 - 2x - 2)
= (x + 2) [(x - 1)(x + 1) - 2(x + 1)]
= (x + 2)(x + 1)(x - 3) (1/2 điểm)
b/ x4 -30x2 + 31x - 30 = 0 <=> (x2 - x + 1)(x - 5)(x + 6) = 0 (*)
Vì x2 - x + 1 = (x - 1/2)2 + 1/4 > 0 (1/2 điểm)
=> (*) <=> (x - 5)(x + 6) = 0 <=> (1/2 điểm)
Câu 2
a/ Có f(0) = c; f(1) = a + b + c; f(2) = 4a + 2b + c là các số nguyên (1/2 điểm)
=> a + b + c - c = a + b nguyên => 2a + 2b nguyên => 4a + 2b nguyên
=> (4a + 2b) - (2a + 2b) = 2a nguyên => 2b nguyên
Vậy 2a, 2b nguyên.
b/ Có A = (1/2 điểm)
Đặt y = => A = y2 – 2y + 3 = (y – 1)2 + 2 2 (1/2 điểm)
=> min A = 2 => y = 1 => x = 2
Vậy min A = 2 khi x = 2 (1/2 điểm)
Câu 3
a/ Ta có (a2 + b2)(x2 + y2)
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Đỗ Như Tính
Dung lượng: |
Lượt tài: 0
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)