Đề + ĐA KT chương 3 hình 9
Chia sẻ bởi Phạm Văn Định |
Ngày 18/10/2018 |
50
Chia sẻ tài liệu: Đề + ĐA KT chương 3 hình 9 thuộc Hình học 9
Nội dung tài liệu:
KIỂM TRA CHƯƠNG III
MÔN: HÌNH HỌC LỚP 9
Thời gian làm bài 45 phút
Họ và tên: …………………………………. Ngày tháng 3 năm 2015
ĐỀ 1
I/ Trắc nghiệm: (3 điểm)
Câu 1: (1,5 điểm) Điền từ thích hợp vào chỗ trống (. . . ) trong các khẳng định sau:
a) Tứ giác ABCD . . . . . . được 1 đường tròn nếu tổng 2 góc đối bằng 1800
b) Trong 1 đường tròn các góc . . . . . . . cùng chắn một cung thì bằng nhau.
c) Trong 1 đường tròn góc nội tiếp chắn nửa đường tròn có số đo bằng . . . . .
Câu 2: (1 điểm)
Cho hình vẽ: Biết ADC = 600, Cm là tiếp tuyến của (O) tại C thì:
a) Số đo góc x bằng:
A. 200 B. 250 C. 300 D. 350
b) Số đo góc y bằng:
A. 500 B. 550 C. 700 D. 600
Câu 3: (0,5 điểm) Độ dài cung 600 của đường tròn có bán kính là.
A. B. C. D.
II/ Tự luận: (7 điểm).
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O. H là trực tâm của tam giác. D là một điểm trên cung BC không chứa điểm A.
a) Xác định vị trí của điểm D để tứ giác BHCD là hình bình hành.
b) Gọi P và Q lần lượt là các điểm đối xứng của điểm D qua các đường thẳng AB và AC. Chứng minh rằng 3 điểm P; H; Q thẳng hàng.
c) Tìm vị trí của điểm D để PQ có độ dài lớn nhất.
ĐÁP ÁN KIỂM TRA CHƯƠNG III HÌNH HỌC LỚP 9 ĐỀ 1
I/ Trắc nghiệm: (3 điểm) mỗi ý đúng 0,5 điểm
Câu1: (1.5 điểm) a) nội tiếp b) nội tiếp c) 900
Câu 2: (1 điểm) a) C b) D
Câu 3: (0,5 điểm) B
II/ Tự luận: (7 điểm).
a) Giả sử đã tìm được điểm D trên cung BC sao cho tứ giác BHCD là hình bình hành. Khi đó: BD//HC; CD//HB vì H là trực tâm tam giác ABC nên CH và BH
BD và CD.
Do đó: ABD = 900 và ACD = 900 .
Vậy AD là đường kính của đường tròn tâm O
Ngược lại nếu D là đầu đường kính AD của đường tròn tâm O thì tứ giác BHCD là hình bình hành.
b) Vì P đối xứng với D qua AB nên APB = ADB
nhưng ADB =ACB , ADB = ACB. Do đó: APB = ACB
Mặt khác: AHB + ACB = 1800 APB + AHB = 1800
Tứ giác APBH nội tiếp được đường tròn nên PAB = PHB
Mà PAB = DAB do đó: PHB = DAB
Chứng minh tương tự ta có: CHQ = DAC
Vậy PHQ = PHB + BHC + CHQ = BAC + BHC = 1800
Ba điểm P; H; Q thẳng hàng.
c) Ta thấy APQ là tam giác cân đỉnh A
Có AP = AQ = AD và PAQ = 2BAC không đổi nên cạnh đáy PQ đạt giá trị lớn nhất AP và AQ là lớn nhất hay AD là lớn nhất
D là đầu đường kính kẻ từ A của đường tròn tâm O.
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Phạm Văn Định
Dung lượng: |
Lượt tài: 3
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)