Chuyen de toan 6

Chia sẻ bởi Trần Thị Minh Tuyết | Ngày 02/05/2019 | 44

Chia sẻ tài liệu: Chuyen de toan 6 thuộc Bài giảng khác

Nội dung tài liệu:

Chuyên Đề 1: Một số các phương pháp giải bài toán chia hết

Phần I: Tóm tắt lý thuyết
Phần II: Các phương pháp giải các bài toán chia hết.
Phương pháp sử dụng dấu hiệu chia hết.
Phương pháp sử dụng tính chất chia hết.
Phương pháp sử dụng xét tập hợp số dư trong phép chia.
Phương pháp sử dụng các phương pháp phân tích thành nhân tử.
Phương pháp biến đổi biểu thức cần chứng minh về dạng tổng.
Phương pháp quy nạp toán học.
Phương pháp sử dụng đồng dư thức.
Phương pháp sử dụng nguyên lý Đ.
Phương pháp phản chứng.





















Ngày soạn: 08/01/2011
Ngày giảng: 10/01/2011
Phần I: Tóm tắt lý thuyết
I. Định nghĩa phép chia
Cho 2 số nguyên a và b trong đó b ( 0 ta luôn tìm được hai số nguyên q và r duy nhất sao cho:
a = bq + r Với 0 ( r ( ( b(
Trong đó: a là số bị chia, b là số chia, q là thương, r là số dư.
Khi a chia cho b có thể xẩy ra ( b( số dư
r ( {0; 1; 2; …; ( b(}
Đặc biệt: r = 0 thì a = bq, khi đó ta nói a chia hết cho b hay b chia hết a.
Ký hiệu: a(b hay b a
Vậy:
a ( b ( Có số nguyên q sao cho a = bq

II. Các tính chất
Với ( a ( 0 ( a ( a
Nếu a ( b và b ( c ( a ( c
Với ( a ( 0 ( 0 ( a
Nếu a, b > 0 và a ( b ; b ( a ( a = b
Nếu a ( b và c bất kỳ ( ac ( b
Nếu a ( b ( ((a) ( ((b)
Với ( a ( a ( ((1)
Nếu a ( b và c ( b ( a ( c ( b
Nếu a ( b và c(b ( a ( c ( b
Nếu a + b ( c và a ( c ( b ( c
Nếu a ( b và n > 0 ( an ( bn
Nếu ac ( b và (a, b) =1 ( c ( b
Nếu a ( b, c ( b và m, n bất kỳ am + cn ( b
Nếu a ( b và c ( d ( ac ( bd
Tích n số nguyên liên tiếp chia hết cho n!
III. Một số dấu hiệu chia hết
Gọi N =
1. Dấu hiệu chia hết cho 2; 5; 4; 25; 8; 125
+ N ( 2 ( a0 ( 2 ( a0({0; 2; 4; 6; 8}
+ N ( 5 ( a0 ( 5 ( a0({0; 5}
+ N ( 4 (hoặc 25) ( 4 (hoặc 25)
+ N ( 8 (hoặc 125) ( 8 (hoặc 125)
2. Dấu hiệu chia hết cho 3 và 9
+ N ( 3 (hoặc 9) ( a0+a1+…+an ( 3 (hoặc 9)
3. Một số dấu hiệu khác
+ N ( 11 ( [(a0+a1+…) - (a1+a3+…)] ( 11
+ N ( 101 ( - 101
+ N ( 7 (hoặc 13) ( + - + (11 (hoặc 13)
+ N ( 37 ( + ( 37
+ N ( 19 ( ( a0+2an-1+22an-2+…+ 2na0) ( 19
IV. Đồng dư thức
a. Định nghĩa: Cho m là số nguyên dương. Nếu hai số nguyên a và b cho cùng số dư khi chia cho m thì ta nói a đồng dư với b theo modun m.
Ký hiệu: a ( b (modun)
Vậy: a ( b (modun) ( a - b ( m
b. Các tính chất
Với ( a ( a ( a (modun)
Nếu a ( b
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Trần Thị Minh Tuyết
Dung lượng: | Lượt tài: 0
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)