Chuyên đề Bất đẳng thức (TĐ ĐH)

Chia sẻ bởi Hoàng Việt Hồng | Ngày 29/04/2019 | 80

Chia sẻ tài liệu: Chuyên đề Bất đẳng thức (TĐ ĐH) thuộc Tin học 9

Nội dung tài liệu:

Chương 3: Bất đẳng thức giữa các trung bình cộng và nhân
3.2. BẤT ĐẲNG THỨC AG SUY RỘNG

BÀI GIẢNG
Chương 3: Bất đẳng thức giữa các trung bình cộng và nhân
3.2. BẤT ĐẲNG THỨC AG SUY RỘNG

BÀI GIẢNG
Bằng phương pháp đã nêu ở trên ta có thể chứng minh bất đẳng thức giữa TBC và TBN suy rộng không mấy khó khăn
Chứng minh. Đặt



Sử dụng bất đẳng thức


Ta thu được hệ



Vì vậy khi nhân vào ta được bất đẳng thức bất kỳ
Chương 3: Bất đẳng thức giữa các trung bình cộng và nhân
3.2. BẤT ĐẲNG THỨC AG SUY RỘNG

BÀI GIẢNG
Mở rộng thứ 2: Đo độ chênh lệch giữa TBC và TBN

Định lý 3.3. Với mọi dãy số dương ta đều có




Và như vậy ta đo được độ chênh lệch đó
Khi và lệch pha nhau thì hiệu giữa TBC và TBN sẽ dương
Khi chúng trùng nhau thì nó sẽ giảm dần


Chương 3: Bất đẳng thức giữa các trung bình cộng và nhân
3.3. HÀM PHÂN THỨC CHÍNH QUY

BÀI GIẢNG
Chương 3: Bất đẳng thức giữa các trung bình cộng và nhân
3.3. HÀM PHÂN THỨC CHÍNH QUY

BÀI GIẢNG
Chương 3: Bất đẳng thức giữa các trung bình cộng và nhân
3.3. HÀM PHÂN THỨC CHÍNH QUY

BÀI GIẢNG
Chương 3: Bất đẳng thức giữa các trung bình cộng và nhân
3.3. HÀM PHÂN THỨC CHÍNH QUY

BÀI GIẢNG
Chương 3: Bất đẳng thức giữa các trung bình cộng và nhân
3.3. HÀM PHÂN THỨC CHÍNH QUY

BÀI GIẢNG
Định nghĩa 3.4. Có thể mở rộng hàm phân thức chính quy cho hàm nhiều biến


Thì ta cũng xây dựng được tính chất tương tự theo từng biến




Thì ta gọi hàm đã cho là hàm phân thức chính quy nhiều biến.
Như vậy ta có thể xây dựng các cấu trúc của hàm phân thức chính quy nhiều biến thông qua hàm phân thức chính quy ít biến bằng cách mở rộng hệ thức này
Chương 3: Bất đẳng thức giữa các trung bình cộng và nhân
3.3. HÀM PHÂN THỨC CHÍNH QUY

BÀI GIẢNG
Chương 3: Bất đẳng thức giữa các trung bình cộng và nhân
3.3. HÀM PHÂN THỨC CHÍNH QUY

BÀI GIẢNG
Chương 3: Bất đẳng thức giữa các trung bình cộng và nhân
3.3. HÀM PHÂN THỨC CHÍNH QUY

BÀI GIẢNG
Hay nói cách khác các hàm phân thức chính quy đạt giá trị nhỏ nhất trên tập các số dương tại các điểm bằng 1

(Với cặp số dương thì



Áp dụng hệ quả của bất đẳng thức AG suy rộng)
Từ đó chỉ ra rằng biểu thức chính quy cho ta hệ quả của hàm phân thức chính quy xác định trên tập dương sẽ có gía trị nhỏ nhất đạt tại



Chương 3: Bất đẳng thức giữa các trung bình cộng và nhân
3.3. HÀM PHÂN THỨC CHÍNH QUY

BÀI GIẢNG
Hàm phân thức chính quy này cho phép xây dựng nhiều cấu trúc của các bài toán mà khi tính toán rất phức tạp nhưng nếu biết được hình thức đó thì ta còn mở rộng hàm phân thức chính quy:
- Từ đạt tại điểm 1 thành đạt tại một điểm tùy ý nào đó bằng cách dùng phép đồng dạng
Không đòi hỏi các hệ sô bằng 0 mà hệ số có thể bằng hằng số nào đó rồi chúng ta biến đổi để trở về hệ số bằng 0
Và như vậy có thể mở rộng khái niệm hàm phân thức chính quy cho các hàm số tổng quát hơn
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Hoàng Việt Hồng
Dung lượng: | Lượt tài: 0
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)