Chương IV. §1. Bất đẳng thức
Chia sẻ bởi Nguyễn Xuân Trang |
Ngày 08/05/2019 |
95
Chia sẻ tài liệu: Chương IV. §1. Bất đẳng thức thuộc Đại số 10
Nội dung tài liệu:
Chương IV:
Bài 1:BẤT ĐẲNG THỨC
I. ÔN TẬP VỀ BẤT ĐẲNG THỨC
II.BẤT ĐẲNG THỨC GIỮA TRUNG BÌNH CỘNG VÀ TRUNG BÌNH NHÂN (CÔ-SI)
III.BẤT ĐẲNG THỨC CHỨA DẤU
GIÁ TRỊ TUYỆT ĐỐI
NỘI DUNG
Trong các mệnh đề sau, mệnh đề nào đúng:
(Sai)
(Đúng)
(Đúng)
I. ÔN TẬP BẤT ĐẲNG THỨC
Chọn dấu thích hợp (=, <, >) để khi điền vào ô vuông ta được một mệnh đề đúng
<
>
=
>
I. ÔN TẬP BẤT ĐẲNG THỨC
I. ÔN TẬP BẤT ĐẲNG THỨC
1. Khái niệm bất đẳng thức:
Các mệnh đề dạng "a < b" hoặc "a > b" được gọi là bất đẳng thức
Mệnh đề P
Q Thì Q gọi là gì?
2. Bất đẳng thức hệ quả và bất đẳng thức tương đương
- Nếu BĐT a
KH:
I. ÔN TẬP BẤT ĐẲNG THỨC:
a/ .Bất đẳng thức hệ quả:
b/ .Bất đẳng thức tương đương:
I. ÔN TẬP BẤT ĐẲNG THỨC
2. Bất đẳng thức hệ quả và bất đẳng thức tương đương
Các bất đẳng thức đã học:
Hãy chứng minh
(T/c Bắc cầu)
(Cộng hai vế)
I. ÔN TẬP BẤT ĐẲNG THỨC
2. Bất đẳng thức hệ quả và bất đẳng thức tương đương
Chứng minh
cộng -b vào hai vế bđt acộng b vào 2 vế của bđt a-b<0 ta được bất đẳng thức hệ quả a
Đảo lại:
Để chứng minh một bất đẳng thức ta chỉ cần xét dấu của hiệu hai vế bất đẳng thức đó.
Như vậy
I. ÔN TẬP BẤT ĐẲNG THỨC
3. Tính chất của bất đẳng thức:
a < b hoặc a > b : gọi là bất đẳng thức ngặt
II. Bất đẳng thức giữa trung bình cộng và trung bình nhân (bất đẳng thức cô-si)
1. Bất đẳng thức Cô-si
+Tính và so sánh
với
6
3
4,1
Trung bình nhân của hai số không âm nhỏ hơn hoặc bằng trung bình cộng của chúng
II. Bất đẳng thức giữa trung bình cộng và trung bình nhân (bất đẳng thức cô-si)
Hãy chứng minh bất đẳng thức cô-si
Nhắc lại:
Để chứng minh một bất đẳng thức ta chỉ cần xét dấu của hiệu hai vế bất đẳng thức đó.
Như vậy để chứng minh bất đẳng thức
Ta cần chứng minh
1. Bất đẳng thức Cô-si
II. Bất đẳng thức giữa trung bình cộng và trung bình nhân (bất đẳng thức cô-si)
1. Bất đẳng thức Cô-si
Thật vậy
Ta có:
II. Bất đẳng thức giữa trung bình cộng và trung bình nhân (bất đẳng thức cô-si)
vậy
Tổng của một số dương với nghịch đảo của nó lớn hơn hoặc bằng 2
II. Bất đẳng thức giữa trung bình cộng và trung bình nhân (bất đẳng thức cô-si)
Hệ quả 1
Tổng của một số dương với nghịch đảo của nó lớn hơn hoặc bằng 2
II. Bất đẳng thức giữa trung bình cộng và trung bình nhân (bất đẳng thức cô-si)
Hệ quả 2
Nếu x, y cùng dương và có tổng không đổi thì tích xy lớn nhất khi và chỉ khi x=y
Chứng minh:
Đặt S = x + y. Áp dụng bđt cô-si ta có:
II. Bất đẳng thức giữa trung bình cộng và trung bình nhân (bất đẳng thức cô-si)
Hệ quả 2
Ý NGHĨA HÌNH HỌC
Trong tất cả các hình chữ nhật có cùng chu vi, hình vuông có diện tích lớn nhất.
II. Bất đẳng thức giữa trung bình cộng và trung bình nhân (bất đẳng thức cô-si)
Hệ quả 3
Nếu x, y cùng dương và có tổng không đổi thì tích xy lớn nhất khi và chỉ khi x=y
Ý NGHĨA HÌNH HỌC
Trong tất cả các hình chữ nhật có cùng chu vi, hình vuông có diện tích lớn nhất.
Hãy chứng minh tương tự
III.Bất đẳng thức chứa dấu giá trị tuyệt đối:
Nhắc lại định nghĩa giá trị tuyệt đối và tính giá trị tuyệt đối của các số sau:
Trả lời:
a)
b)
c)
d)
III.Bất đẳng thức chứa dấu giá trị tuyệt đối:
III.Bất đẳng thức chứa dấu giá trị tuyệt đối:
Giải
Củng cố bài học
Tính chất của bất đẳng thức.
Định lý cô-si và các hệ quả của định lý cô-si
Ý nghĩa hình học của chúng
Làm các bài tập trong sách giáo khoa trang 79
Bất đẳng thức chứa dấu giá trị tuyệt đối
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Xuân Trang
Dung lượng: |
Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)