Chương III. §3. Ứng dụng của tích phân trong hình học

Chia sẻ bởi Nguyễn Thanh Hải | Ngày 09/05/2019 | 160

Chia sẻ tài liệu: Chương III. §3. Ứng dụng của tích phân trong hình học thuộc Giải tích 12

Nội dung tài liệu:

NGUYỄN XUÂN ĐÀN
THPT QUẢNG XƯƠNG III
1
NGUYỄN XUÂN ĐÀN
THPT QUẢNG XƯƠNG III
2
ỨNG DỤNG HÌNH HỌC VÀ
VẬT LÝ CỦA TÍCH PHÂN
KIỂM TRA BÀI CŨ
Câu hỏi: Nêu định nghĩa tích phân? Ý nghĩa hình học của tích phân?
Định nghĩa tích phân: Hàm số f(x) liên tục trên khoảng K, a&b ∈ K, F(x) là một nguyên hàm của f(x) trên K. Hiệu F(b) - F(a) được gọi là tích phân từ a đến b của f(x), và ký hiệu:
Ý nghĩa hình học: Nếu:

Trong đó SaABb là diện tích hình thang cong giới hạn bởi đồ thị của y = f(x), Ox, x = a và x = b
NGUYỄN XUÂN ĐÀN
THPT QUẢNG XƯƠNG III
3
Từ ý nghĩa hình học của tích phân, hãy nêu cách tính diện tích hình thang cong?
ỨNG DỤNG HÌNH HỌC
CỦA TÍCH PHÂN
x
b
a
A
B
y
O
Nếu f(x) ≥ 0 và liên tục trên [a; b] thì:
Nếu f(x) bất kỳ liên tục trên [a; b] thì
công thức trên có đúng không?
Cần thêm điều kiện gì?
f(x) ≥ 0
Tính diện tích của hình phẳng
NGUYỄN XUÂN ĐÀN
THPT QUẢNG XƯƠNG III
4
Hãy quan sát các hình sau và nêu công thức tổng quát?

x
y
O
x
B’
y
O
B’
A’
- f(x)
Vậy với  f(x) liên tục trên [a; b] thì:
NGUYỄN XUÂN ĐÀN
THPT QUẢNG XƯƠNG III
5
Các thí dụ
Thí dụ 1: Tính
Thí dụ 2: Tính
x
y
O
x
y
O
NGUYỄN XUÂN ĐÀN
THPT QUẢNG XƯƠNG III
6
Từ công thức tính diện tích hình thang cong
nếu thay đường y = 0 bởi y = g(x)?
b
a
A
B
f(x)
C
D
b
a
c
A
B
C
D
f(x)
g(x)
g(x)
Hãy quan sát các hình sau và nêu công thức tổng quát?

Vậy diện tích
NGUYỄN XUÂN ĐÀN
THPT QUẢNG XƯƠNG III
7
Cách tính
Đặt h(x) = f(x) – g(x), xét dấu h(x) trên [a; b].
Giả sử ∃ &  là các nghiệm của h(x): a   <   b, Khi đó:

Vì f(x) và g(x) liên tục trên [a; b]
NGUYỄN XUÂN ĐÀN
THPT QUẢNG XƯƠNG III
8
Tính diện tích của hình tròn và Elíp
x
y
O
x
y
O
R
R
S1
Với Elíp tương tự ta có:
a
b
NGUYỄN XUÂN ĐÀN
THPT QUẢNG XƯƠNG III
9
THỂ TÍCH CỦA VẬT THỂ
x
x
b
a
y
O
CÔNG THỨC TÍNH THỂ TÍCH
S(X)
NGUYỄN XUÂN ĐÀN
THPT QUẢNG XƯƠNG III
10
x
x
O
h
y
THỂ TÍCH CỦA khối nón, chóp, nón cụt và chóp cụt
Ta có:
Xét phép:
Cho khối chóp (nón) có diện tích đáy là S, đường
cao là h. Tính thể tích khối chóp (nón) đó.
S
NGUYỄN XUÂN ĐÀN
THPT QUẢNG XƯƠNG III
11
Từ công thức và cách tính thể tích khối nón, chóp, hãy xác định công thức tính thể tích khối nón cụt và chóp cụt?
THỂ TÍCH CỦA khối nón cụt và chóp cụt
Ta có:
NGUYỄN XUÂN ĐÀN
THPT QUẢNG XƯƠNG III
12
O
x
x
y
THỂ TÍCH CỦA VẬT THỂ TRÒN XOAY
Cho hình thang cong AabB, với cung AB có PT là y = f(x) Hãy xác định thể tích vật tròn xoay khi hình thang cong đó quay quanh Ox?
f(x)
a
b
Ta có:
Vậy:
S(x)
NGUYỄN XUÂN ĐÀN
THPT QUẢNG XƯƠNG III
13
Tương tự trên ta có:
Cho hình thang cong AabB, với cung AB có PT là x = f(y) Hãy xác định thể tích vật tròn xoay khi hình thang cong đó quay quanh Oy?
NGUYỄN XUÂN ĐÀN
THPT QUẢNG XƯƠNG III
14
Thí dụ 1: Tính
O
x
y

Ta có:
Thí dụ 2: Tính
Ta có:
O
x
y
2
4
NGUYỄN XUÂN ĐÀN
THPT QUẢNG XƯƠNG III
15
Khối cầu được sinh ra bởi đườn tròn
(C): x2 + y2 = R2 quay quanh Ox
O
x
x
y
THỂ TÍCH CỦA KHỐI CẦU
Vậy:
NGUYỄN XUÂN ĐÀN
THPT QUẢNG XƯƠNG III
16
ỨNG DỤNG VẬT LÝ
CỦA TÍCH PHÂN
NGUYỄN XUÂN ĐÀN
THPT QUẢNG XƯƠNG III
17
Ta có:
NGUYỄN XUÂN ĐÀN
THPT QUẢNG XƯƠNG III
18
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Thanh Hải
Dung lượng: | Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)