Chương III. §3. Ứng dụng của tích phân trong hình học
Chia sẻ bởi Cao Lam Son |
Ngày 09/05/2019 |
66
Chia sẻ tài liệu: Chương III. §3. Ứng dụng của tích phân trong hình học thuộc Giải tích 12
Nội dung tài liệu:
ỦY BAN NHÂN DÂN TỈNH BÌNH ĐỊNH
TRƯỜNG CĐN QUY NHƠN
BÀI GIẢNG
ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC
Giáo viên: Cao Lam Sơn
Tổ Tự nhiên – Khoa Đại Cương
Lớp dạy: TCN_K4D
Năm học 2011 - 2012
BÀI 3: ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC (tiết 1)
I. TÍNH DIỆN TÍCH HÌNH PHẲNG
Ví dụ
Cho hình phẳng giới hạn bởi các đường thẳng
y = 2x + 1; y = 0; x = 1 và x = 5.
Giải: Ta có (đvdt)
và
a) Dùng công thức hình học tính diện tích hp.
b) Tính tích phân sau
BÀI 3: ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC (tiết 1)
I. TÍNH DIỆN TÍCH HÌNH PHẲNG
Bài toán: Tính diện tích hp
y = - f(x)
B’
A’
S’
- Nếu f(x) ≥ 0 trên [a;b] thì
- Nếu f(x) ≤ 0 trên [a;b] thì
- Nếu f(x) ≥ 0 trên [a;c] và [d;b], f(x) ≤ 0 trên [c;d] thì
1. Hình phẳng giới hạn bởi một đường cong và trục hoành
BÀI 3: ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC (tiết 1)
I. TÍNH DIỆN TÍCH HÌNH PHẲNG
1. Hình phẳng giới hạn bởi một đường cong và trục hoành
Bài toán: Tính diện tích hp
Ví dụ: Tính diện tích hp giới hạn bởi
Chú ý: Khi tính tích phân phải xét dấu f(x) để bỏ dấu gt tuyệt đối
(đvdt)
BÀI 3: ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC (tiết 1)
I. TÍNH DIỆN TÍCH HÌNH PHẲNG
1. Hình phẳng giới hạn bởi một đường cong và trục hoành
2. Hình phẳng giới hạn bởi hai đường cong
Bài toán: Tính diện tích hình phẳng
BÀI 3: ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC (tiết 1)
I. TÍNH DIỆN TÍCH HÌNH PHẲNG
1. Hình phẳng giới hạn bởi một đường cong và trục hoành
2. Hình phẳng giới hạn bởi hai đường cong
Bài toán: Tính diện tích hình phẳng
- Xét TH f1(x) ≥ f2(x) ≥ 0 x [a;b].
Khi đó S = S1 - S2
Chúng ta có thể tính S thông qua S1 và S2 không?
Và tính như thế nào?
BÀI 3: ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC (tiết 1)
I. TÍNH DIỆN TÍCH HÌNH PHẲNG
1. Hình phẳng giới hạn bởi một đường cong và trục hoành
2. Hình phẳng giới hạn bởi hai đường cong
Bài toán: Tính diện tích hình phẳng
Chú ý về cách tính:
- Giải pt f1(x) = f2(x)
(f1(x) - f2(x) = 0)
- Tách tích phân thành
Ví dụ: Tính diện tích hình phẳng:
BÀI 3: ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC (tiết 1)
I. TÍNH DIỆN TÍCH HÌNH PHẲNG
1. Hình phẳng giới hạn bởi một đường cong và trục hoành
2. Hình phẳng giới hạn bởi hai đường cong
Bài toán: Tính diện tích hình phẳng
Ví dụ: Tính diện tích hp:
Giải: - Ta có f1(x) - f2(x) = x2 - x - 2 = 0
- Ta có
(đvdt)
BÀI 3: ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC (tiết 1)
I. TÍNH DIỆN TÍCH HÌNH PHẲNG
1. Hình phẳng giới hạn bởi một đường cong và trục hoành
2. Hình phẳng giới hạn bởi hai đường cong
Hoạt động nhóm: Cho các hình phẳng sau
Nhóm 1: Hãy cho biết S1 giới hạn bởi các đường nào?
Nhóm 2: Hãy nêu công thức tính diện tích S1 bằng tích phân trong đó đã phá bỏ
(không có) dấu giá trị tuyệt đối?
Nhóm 3: Hãy cho biết S2 giới hạn bởi các đường nào?
Nhóm 4: Hãy nêu công thức tính diện tích S2 bằng tích phân trong đó đã phá bỏ
(không có) dấu giá trị tuyệt đối?
BÀI 3: ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC (tiết 1)
I. TÍNH DIỆN TÍCH HÌNH PHẲNG
1. Hình phẳng giới hạn bởi một đường cong và trục hoành
2. Hình phẳng giới hạn bởi hai đường cong
Bài toán: Tính dt
Bài toán: Tính dt
Chú ý: Tính tích phân phải xét dấu f(x) để bỏ dấu gt tuyệt đối
Cách tính: - Giải pt f1(x) - f2(x) = 0
- Tách tích phân và đưa dấu giá trị tuyệt đối ra ngoài dấu tích phân
BÀI 3: ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC (tiết 1)
I. TÍNH DIỆN TÍCH HÌNH PHẲNG
1. Hình phẳng giới hạn bởi một đường cong và trục hoành
2. Hình phẳng giới hạn bởi hai đường cong
Bài toán: Tính dt hình phẳng
Bài tập: Tính diện tích hp:
Giải: - Ta có pt ex = 1
x = 0 [1;2]
- Ta có
(đvdt)
BÀI 3: ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC (tiết 1)
Bài tập về nhà: 1 + 2 + 3 trang 121 SGK
Bài tập thêm: Tính diện tích hình phẳng giới hạn bởi các đường sau:
Xin chân thành cảm ơn quý thầy cô
và các em!
TRƯỜNG CĐN QUY NHƠN
BÀI GIẢNG
ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC
Giáo viên: Cao Lam Sơn
Tổ Tự nhiên – Khoa Đại Cương
Lớp dạy: TCN_K4D
Năm học 2011 - 2012
BÀI 3: ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC (tiết 1)
I. TÍNH DIỆN TÍCH HÌNH PHẲNG
Ví dụ
Cho hình phẳng giới hạn bởi các đường thẳng
y = 2x + 1; y = 0; x = 1 và x = 5.
Giải: Ta có (đvdt)
và
a) Dùng công thức hình học tính diện tích hp.
b) Tính tích phân sau
BÀI 3: ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC (tiết 1)
I. TÍNH DIỆN TÍCH HÌNH PHẲNG
Bài toán: Tính diện tích hp
y = - f(x)
B’
A’
S’
- Nếu f(x) ≥ 0 trên [a;b] thì
- Nếu f(x) ≤ 0 trên [a;b] thì
- Nếu f(x) ≥ 0 trên [a;c] và [d;b], f(x) ≤ 0 trên [c;d] thì
1. Hình phẳng giới hạn bởi một đường cong và trục hoành
BÀI 3: ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC (tiết 1)
I. TÍNH DIỆN TÍCH HÌNH PHẲNG
1. Hình phẳng giới hạn bởi một đường cong và trục hoành
Bài toán: Tính diện tích hp
Ví dụ: Tính diện tích hp giới hạn bởi
Chú ý: Khi tính tích phân phải xét dấu f(x) để bỏ dấu gt tuyệt đối
(đvdt)
BÀI 3: ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC (tiết 1)
I. TÍNH DIỆN TÍCH HÌNH PHẲNG
1. Hình phẳng giới hạn bởi một đường cong và trục hoành
2. Hình phẳng giới hạn bởi hai đường cong
Bài toán: Tính diện tích hình phẳng
BÀI 3: ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC (tiết 1)
I. TÍNH DIỆN TÍCH HÌNH PHẲNG
1. Hình phẳng giới hạn bởi một đường cong và trục hoành
2. Hình phẳng giới hạn bởi hai đường cong
Bài toán: Tính diện tích hình phẳng
- Xét TH f1(x) ≥ f2(x) ≥ 0 x [a;b].
Khi đó S = S1 - S2
Chúng ta có thể tính S thông qua S1 và S2 không?
Và tính như thế nào?
BÀI 3: ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC (tiết 1)
I. TÍNH DIỆN TÍCH HÌNH PHẲNG
1. Hình phẳng giới hạn bởi một đường cong và trục hoành
2. Hình phẳng giới hạn bởi hai đường cong
Bài toán: Tính diện tích hình phẳng
Chú ý về cách tính:
- Giải pt f1(x) = f2(x)
(f1(x) - f2(x) = 0)
- Tách tích phân thành
Ví dụ: Tính diện tích hình phẳng:
BÀI 3: ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC (tiết 1)
I. TÍNH DIỆN TÍCH HÌNH PHẲNG
1. Hình phẳng giới hạn bởi một đường cong và trục hoành
2. Hình phẳng giới hạn bởi hai đường cong
Bài toán: Tính diện tích hình phẳng
Ví dụ: Tính diện tích hp:
Giải: - Ta có f1(x) - f2(x) = x2 - x - 2 = 0
- Ta có
(đvdt)
BÀI 3: ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC (tiết 1)
I. TÍNH DIỆN TÍCH HÌNH PHẲNG
1. Hình phẳng giới hạn bởi một đường cong và trục hoành
2. Hình phẳng giới hạn bởi hai đường cong
Hoạt động nhóm: Cho các hình phẳng sau
Nhóm 1: Hãy cho biết S1 giới hạn bởi các đường nào?
Nhóm 2: Hãy nêu công thức tính diện tích S1 bằng tích phân trong đó đã phá bỏ
(không có) dấu giá trị tuyệt đối?
Nhóm 3: Hãy cho biết S2 giới hạn bởi các đường nào?
Nhóm 4: Hãy nêu công thức tính diện tích S2 bằng tích phân trong đó đã phá bỏ
(không có) dấu giá trị tuyệt đối?
BÀI 3: ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC (tiết 1)
I. TÍNH DIỆN TÍCH HÌNH PHẲNG
1. Hình phẳng giới hạn bởi một đường cong và trục hoành
2. Hình phẳng giới hạn bởi hai đường cong
Bài toán: Tính dt
Bài toán: Tính dt
Chú ý: Tính tích phân phải xét dấu f(x) để bỏ dấu gt tuyệt đối
Cách tính: - Giải pt f1(x) - f2(x) = 0
- Tách tích phân và đưa dấu giá trị tuyệt đối ra ngoài dấu tích phân
BÀI 3: ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC (tiết 1)
I. TÍNH DIỆN TÍCH HÌNH PHẲNG
1. Hình phẳng giới hạn bởi một đường cong và trục hoành
2. Hình phẳng giới hạn bởi hai đường cong
Bài toán: Tính dt hình phẳng
Bài tập: Tính diện tích hp:
Giải: - Ta có pt ex = 1
x = 0 [1;2]
- Ta có
(đvdt)
BÀI 3: ỨNG DỤNG CỦA TÍCH PHÂN TRONG HÌNH HỌC (tiết 1)
Bài tập về nhà: 1 + 2 + 3 trang 121 SGK
Bài tập thêm: Tính diện tích hình phẳng giới hạn bởi các đường sau:
Xin chân thành cảm ơn quý thầy cô
và các em!
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Cao Lam Son
Dung lượng: |
Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)