Chương II. §6. Tính chất của hai tiếp tuyến cắt nhau
Chia sẻ bởi Nguyễn Quang Tạo |
Ngày 22/10/2018 |
83
Chia sẻ tài liệu: Chương II. §6. Tính chất của hai tiếp tuyến cắt nhau thuộc Hình học 9
Nội dung tài liệu:
Chào mừng các thầy cô giáo
về dự chuyên đề thay SGK lớp 9
Môn Toán
NHỮNG QUY ĐỊNH TRONG GiỜ HỌC
Kiểm tra bài cũ
Phát biểu định nghĩa, tính chất tiếp tuyến của đường tròn.
Ví dụ 1
Cho hình vẽ.
Trong đó AB, AC là hai tiếp tuyến
của (O).
Hãy kể tên một vài đoạn thẳng
bằng nhau, một vài góc bằng nhau.
C
Nhận xét
ABO = ACO = 900
OB = OC = R
BAO = CAO, BOA = COA, AB = AC
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
1. Định lí về hai tiếp tuyến cắt nhau
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
Chứng minh :
Vì AB, AC là các tiếp tuyến của (O) nên AB ? OB tại B, AC ? OC tại C.
Hai tam giác vuông ABO và ACO
có AO chung, OB = OC = R.
Suy ra ?ABO = ?ACO
(cạnh huyền cạnh góc vuông).
Nên ta có :
AB = AC và BAO = CAO, BOA = COA.
1. Định lí về hai tiếp tuyến cắt nhau
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
1. Định lí về hai tiếp tuyến cắt nhau
Giả thiết
Kết luận
AB, AC là các tiếp tuyến của (O).
1. AB = AC
2. Tia OA là tia phân giác của góc BOC
3. Tia AO là tia phân giác của góc BAC
Em hãy hoàn thành phát biểu của định lí.
Định lí
Nếu hai tiếp tuyến của đường tròn cắt nhau tại một điểm thì :
Điểm đó
Tia kẻ từ điểm đó đi qua tâm là
Tia kẻ từ tâm đi qua tiếp điểm đó là
cách đều hai tiếp điểm.
tia phân giác của góc tạo bởi
hai bán kính đi qua tiếp điểm.
tia phân giác của góc tạo bởi hai tiếp tuyến.
..........
..........
..........
..........
........
........
........
?
Thực hành
Tìm tâm của một miếng gỗ hình tròn.
Tiết 28
Tính chất hai tiếp tuyến cắt nhau
Miếng gỗ
Thước phân giác
Tiết 28
Tính chất hai tiếp tuyến cắt nhau
Thực hành
Tìm tâm của một miếng gỗ hình tròn.
Bước 1
Bước 2
Tiết 28
Tính chất hai tiếp tuyến cắt nhau
Thực hành
Tìm tâm của một miếng gỗ hình tròn.
Bước 1
Bước 2
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
2. Đường tròn nội tiếp tam giác
Ví dụ 2. Cho hình vẽ.
Hãy thảo luận nhóm để làm bài tập sau.
Các mệnh đề sau, mệnh đề nào đúng.
1. Đường tròn tâm I tiếp xúc với 3 cạnh
của tam giác.
2. Điểm I là giao điểm 3 đường
trung trực của tam giác.
3. Điểm I là giao điểm 3 đường
phân giác trong của tam giác.
?
?
?
Đ
Đ
S
Hãy chứng minh mệnh đề 1.
Hãy chứng minh mệnh đề 3.
O
2. Đường tròn nội tiếp tam giác
Định nghĩa
Đường tròn tiếp xúc với ba cạnh
của một tam giác gọi là
đường tròn nội tiếp tam giác.
Tâm đường tròn nội tiếp là giao điểm
của 3 đường phân giác trong của tam giác.
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
Thực hành
Vẽ đường tròn nội tiếp tam giác.
?
3. Đường tròn bàng tiếp tam giác
Ví dụ 3
Cho hình vẽ sau.
I
Đường tròn (I,) có phải là
đường tròn nội tiếp tam giác A`B`C`?
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
3. Đường tròn bàng tiếp tam giác
Ví dụ 3
Cho hình vẽ sau.
A,
E,
F,
D,
I,
B,
C,
Định nghĩa
Đường tròn tiếp xúc với một cạnh của
tam giác và tiếp xúc với phần
kéo dài của hai cạnh kia gọi là
đường tròn bàng tiếp tam giác.
Nêu cách xác định tâm (I,) .
Tâm đường tròn bàng tiếp trong
góc A` là giao điểm của hai
đường phân giác các góc ngoài tại B` và C`.
Một tam giác có bao nhiêu
đường tròn bàng tiếp ?
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
?
3. Đường tròn bàng tiếp tam giác
Ví dụ 2
Cho hình vẽ sau.
A,
B,
C,
E,
F,
D,
I,
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
M
N
Nêu cách xác định tâm (I,) .
Tâm đường tròn bàng tiếp trong
góc A` là giao điểm của hai
đường phân giác các góc ngoài tại B` và C`.
Một tam giác có bao nhiêu
đường tròn bàng tiếp ?
Định nghĩa
Đường tròn tiếp xúc với một cạnh của
tam giác và tiếp xúc với phần
kéo dài của hai cạnh kia gọi là
đường tròn bàng tiếp tam giác.
?
Bài tập 1. Trắc nghiệm
Nối mỗi ý ở cột A với một ý ở cột B để được khẳng định đúng.
Đường tròn nội tiếp tam giác
Đường tròn bàng tiếp tam giác
Đường tròn ngoại tiếp tam giác
Tâm đường tròn nội tiếp tam giác
Tâm đường tròn bàng tiếp tam giác
là đường tròn đi qua ba đỉnh của tam giác
là đường tròn tiếp xúc với ba cạnh của tam giác.
là giao điểm của ba đường phân giác trong của tam giác.
là đường tròn tiếp xúc với một cạnh của tam giác và phần kéo dài của hai cạnh kia.
là giao điểm ba đường trung trực
là giao của hai đường phân giác ngoài của tam giác.
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
A
B
Luyện tập
Bài tập 2 (Bài 27 SGK)
Từ một điểm A nằm ngoài (O), kẻ các tiếp tuyến AB, AC.
Tiếp tuyến qua M thuộc cung nhỏ BC
của (O) cắt AB, AC tương ứng tại D và E.
Chứng minh rằng :
Chu vi tam giác ADE bằng 2AB.
Bài giải.
Theo tính chất hai tiếp tuyến cắt nhau,
Ta có :
DB = DM, EC = EM.
Do đó, C?ADE = AD + DE + EA
= AD + DM + ME + EA
= AD + DB + EC + EA = AC + AB
= 2AB
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
Luyện tập
Chú ý:
Chu vi ?ADE không đổi khi
M di dộng trên cung nhỏ BC.
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
Bài tập 2 (Bài 27 SGK)
Từ một điểm A nằm ngoài (O), kẻ các tiếp tuyến AB, AC.
Tiếp tuyến qua M thuộc cung nhỏ BC
của (O) cắt AB, AC tương ứng tại D và E.
Chứng minh rằng :
Chu vi tam giác ADE bằng 2AB.
Luyện tập
?
1. Định lí về hai tiếp tuyến cắt nhau
2. Đường tròn nội tiếp tam giác
3. Đường tròn bàng tiếp tam giác
Yêu cầu
Nắm vững tính chất của hai tiếp tuyến cắt nhau tại một điểm.
Phân biệt định nghĩa, cách xác định tâm của đường tròn ngoại,
nội tiếp , bàng tiếp tam giác.
Vận dụng các kiến thức đã học để giải bài tập, 26, 28, 29 (SGK).
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
về dự chuyên đề thay SGK lớp 9
Môn Toán
NHỮNG QUY ĐỊNH TRONG GiỜ HỌC
Kiểm tra bài cũ
Phát biểu định nghĩa, tính chất tiếp tuyến của đường tròn.
Ví dụ 1
Cho hình vẽ.
Trong đó AB, AC là hai tiếp tuyến
của (O).
Hãy kể tên một vài đoạn thẳng
bằng nhau, một vài góc bằng nhau.
C
Nhận xét
ABO = ACO = 900
OB = OC = R
BAO = CAO, BOA = COA, AB = AC
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
1. Định lí về hai tiếp tuyến cắt nhau
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
Chứng minh :
Vì AB, AC là các tiếp tuyến của (O) nên AB ? OB tại B, AC ? OC tại C.
Hai tam giác vuông ABO và ACO
có AO chung, OB = OC = R.
Suy ra ?ABO = ?ACO
(cạnh huyền cạnh góc vuông).
Nên ta có :
AB = AC và BAO = CAO, BOA = COA.
1. Định lí về hai tiếp tuyến cắt nhau
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
1. Định lí về hai tiếp tuyến cắt nhau
Giả thiết
Kết luận
AB, AC là các tiếp tuyến của (O).
1. AB = AC
2. Tia OA là tia phân giác của góc BOC
3. Tia AO là tia phân giác của góc BAC
Em hãy hoàn thành phát biểu của định lí.
Định lí
Nếu hai tiếp tuyến của đường tròn cắt nhau tại một điểm thì :
Điểm đó
Tia kẻ từ điểm đó đi qua tâm là
Tia kẻ từ tâm đi qua tiếp điểm đó là
cách đều hai tiếp điểm.
tia phân giác của góc tạo bởi
hai bán kính đi qua tiếp điểm.
tia phân giác của góc tạo bởi hai tiếp tuyến.
..........
..........
..........
..........
........
........
........
?
Thực hành
Tìm tâm của một miếng gỗ hình tròn.
Tiết 28
Tính chất hai tiếp tuyến cắt nhau
Miếng gỗ
Thước phân giác
Tiết 28
Tính chất hai tiếp tuyến cắt nhau
Thực hành
Tìm tâm của một miếng gỗ hình tròn.
Bước 1
Bước 2
Tiết 28
Tính chất hai tiếp tuyến cắt nhau
Thực hành
Tìm tâm của một miếng gỗ hình tròn.
Bước 1
Bước 2
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
2. Đường tròn nội tiếp tam giác
Ví dụ 2. Cho hình vẽ.
Hãy thảo luận nhóm để làm bài tập sau.
Các mệnh đề sau, mệnh đề nào đúng.
1. Đường tròn tâm I tiếp xúc với 3 cạnh
của tam giác.
2. Điểm I là giao điểm 3 đường
trung trực của tam giác.
3. Điểm I là giao điểm 3 đường
phân giác trong của tam giác.
?
?
?
Đ
Đ
S
Hãy chứng minh mệnh đề 1.
Hãy chứng minh mệnh đề 3.
O
2. Đường tròn nội tiếp tam giác
Định nghĩa
Đường tròn tiếp xúc với ba cạnh
của một tam giác gọi là
đường tròn nội tiếp tam giác.
Tâm đường tròn nội tiếp là giao điểm
của 3 đường phân giác trong của tam giác.
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
Thực hành
Vẽ đường tròn nội tiếp tam giác.
?
3. Đường tròn bàng tiếp tam giác
Ví dụ 3
Cho hình vẽ sau.
I
Đường tròn (I,) có phải là
đường tròn nội tiếp tam giác A`B`C`?
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
3. Đường tròn bàng tiếp tam giác
Ví dụ 3
Cho hình vẽ sau.
A,
E,
F,
D,
I,
B,
C,
Định nghĩa
Đường tròn tiếp xúc với một cạnh của
tam giác và tiếp xúc với phần
kéo dài của hai cạnh kia gọi là
đường tròn bàng tiếp tam giác.
Nêu cách xác định tâm (I,) .
Tâm đường tròn bàng tiếp trong
góc A` là giao điểm của hai
đường phân giác các góc ngoài tại B` và C`.
Một tam giác có bao nhiêu
đường tròn bàng tiếp ?
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
?
3. Đường tròn bàng tiếp tam giác
Ví dụ 2
Cho hình vẽ sau.
A,
B,
C,
E,
F,
D,
I,
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
M
N
Nêu cách xác định tâm (I,) .
Tâm đường tròn bàng tiếp trong
góc A` là giao điểm của hai
đường phân giác các góc ngoài tại B` và C`.
Một tam giác có bao nhiêu
đường tròn bàng tiếp ?
Định nghĩa
Đường tròn tiếp xúc với một cạnh của
tam giác và tiếp xúc với phần
kéo dài của hai cạnh kia gọi là
đường tròn bàng tiếp tam giác.
?
Bài tập 1. Trắc nghiệm
Nối mỗi ý ở cột A với một ý ở cột B để được khẳng định đúng.
Đường tròn nội tiếp tam giác
Đường tròn bàng tiếp tam giác
Đường tròn ngoại tiếp tam giác
Tâm đường tròn nội tiếp tam giác
Tâm đường tròn bàng tiếp tam giác
là đường tròn đi qua ba đỉnh của tam giác
là đường tròn tiếp xúc với ba cạnh của tam giác.
là giao điểm của ba đường phân giác trong của tam giác.
là đường tròn tiếp xúc với một cạnh của tam giác và phần kéo dài của hai cạnh kia.
là giao điểm ba đường trung trực
là giao của hai đường phân giác ngoài của tam giác.
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
A
B
Luyện tập
Bài tập 2 (Bài 27 SGK)
Từ một điểm A nằm ngoài (O), kẻ các tiếp tuyến AB, AC.
Tiếp tuyến qua M thuộc cung nhỏ BC
của (O) cắt AB, AC tương ứng tại D và E.
Chứng minh rằng :
Chu vi tam giác ADE bằng 2AB.
Bài giải.
Theo tính chất hai tiếp tuyến cắt nhau,
Ta có :
DB = DM, EC = EM.
Do đó, C?ADE = AD + DE + EA
= AD + DM + ME + EA
= AD + DB + EC + EA = AC + AB
= 2AB
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
Luyện tập
Chú ý:
Chu vi ?ADE không đổi khi
M di dộng trên cung nhỏ BC.
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
Bài tập 2 (Bài 27 SGK)
Từ một điểm A nằm ngoài (O), kẻ các tiếp tuyến AB, AC.
Tiếp tuyến qua M thuộc cung nhỏ BC
của (O) cắt AB, AC tương ứng tại D và E.
Chứng minh rằng :
Chu vi tam giác ADE bằng 2AB.
Luyện tập
?
1. Định lí về hai tiếp tuyến cắt nhau
2. Đường tròn nội tiếp tam giác
3. Đường tròn bàng tiếp tam giác
Yêu cầu
Nắm vững tính chất của hai tiếp tuyến cắt nhau tại một điểm.
Phân biệt định nghĩa, cách xác định tâm của đường tròn ngoại,
nội tiếp , bàng tiếp tam giác.
Vận dụng các kiến thức đã học để giải bài tập, 26, 28, 29 (SGK).
Tiết 28
Đ 6. Tính chất hai tiếp tuyến cắt nhau
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Quang Tạo
Dung lượng: |
Lượt tài: 3
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)