Chương II. §3. Lôgarit
Chia sẻ bởi Nguyễn Quốc Tuấn |
Ngày 09/05/2019 |
169
Chia sẻ tài liệu: Chương II. §3. Lôgarit thuộc Giải tích 12
Nội dung tài liệu:
§3. LÔGARIT – T1
Mục đích, yêu cầu
1. Hiểu và biết vận dụng định nghĩa, các quy tắc tính lôgarit.
2. Biết vận dụng lôgarit để giải toán.
B. Nội dung bài học
Khái niệm lôgarit.
Định nghĩa.
Tính chất.
II. Quy tắc tính lôgarit.
Lôgarit của một tích.
C. Tiến trình bày học
HĐ1: Tìm x để:
a) 2x = 8;
b) 2x = ¼;
c) 3x = 81;
d) 5x = 1/125.
2x = 8 2x = 23 x = 3
2x = ¼ 2x = 2-2 x = -2
3x = 81 3x = 34 x = 4
5x = 1/125 5x = 5-3 x = -3
I. Khái niệm lôgarit
? Tìm x để: 2x = 7 (*)
Nhận xét:
Từ bài toán (*) dẫn đến bài toán tổng quát là: Cho số dương a,Tìm x trong phương trình
ax = b (1)
Người ta chứng minh được rằng với hai số dương a, b, a khác 1, luôn tồn tại duy nhất số x sao cho ax = b.
Từ nhận xét ở trên dẫn đến khái niệm lấy lôgarit của một số như sau:
1. Định nghĩa: Cho hai số dương a, b với a khác 1. Số x thoả mãn đẳng thức ax = b được gọi là lôgarit cơ số a của b và kí hiệu là logab.
I. Khái niệm lôgarit
Ta tìm x trong (*) ntn?
x = logab ax = b
I. Khái niệm lôgarit
Ví dụ 1:
log28 = 3 vì 23 = 8 b) log1/39 = -2 vì (1/3)-2 = 9
HĐ2:
Tính log1/24, log31/27.
Có các số x, y nào để 3x = 0, 2y = -3 hay không?
Giải:
log1/24 = -2 vì (1/2)-2 = 4 log31/27 = -3 vì 3-3 = 1/27
Không tồn tại số x, y như vậy.
Chú ý: Không có logarit của số âm và số 0.
I. Khái niệm lôgarit
2. Tính chất: Với hai số a, b, a khác 1. Ta có các tính chất sau:
HĐ3: Chứng minh
loga1 = 0 ,
logaa = 1,
alogab = b,
logaax =x.
loga1 = 0 a0 = 1.
logaa = 1 a1 = a.
Từ ĐN ta có
x = logab ax = b alogab = b.
logaax = x ax = ax .
I. Khái niệm lôgarit
Ví dụ 2:
32log35 = (3log35)2 = 52 = 25.
log1/28 = log1/2(1/2)-3 = -3.
HĐ4: Tính
4log2(1/7) = ? b) (1/25)log5(1/3) = ?
Giải:
4log2(1/7) = (22)log2(1/7) =
= [2log2(1/7))2]2 = (1/7)2 = 1/49.
(1/25)log5(1/3) = (5-2)log5(1/3) =
= [5log5(1/3) ]-2 = (1/3)-2 = 9.
II. Quy tắc tính lôgarit
HĐ5: Cho b1 = 23 , b2 = 25.
Tính log2b1 + log2b2; log2(b1b2) và so sánh kết quả.
Giải:
log2b1 + log2b2 = log223 + log225 = 3 + 5 = 8.
log2(b1.b2) = log2(2325) = log228 = 8.
Vậy: log223 + log225 = log2(2325).
? Vấn đề đặt ra là nếu ta thay b1, b2 bởi các số dương tuỳ ý và thay số 2 ở trên bởi một số dương a khác 1 thì đẳng thức trên có còn đứng hay không?
Chúng ta đi nghiên cứu vấn đề này !
II. Quy tắc tính lôgarit
1.Lôgarit của một tích
Định lí 1:
Lôgarit của một tích bằng tổng các lôgarit
Chứng minh:
Đặt x1 = logab1, x2 = logab2, ta có
x1 + x2 = logab1+ logab2 . (1)
Mặt khác, vì b1 = ax1, b2 = ax2, suy ra b1b2 = ax1ax2 = ax1+ x2 .
Do đó x1 + x2 = loga(b1b2) . (2)
Từ (1) và (2) suy ra loga(b1b2) = logab1 + logab2 . ■
Cho ba số dương a, b1, b2 , a khác 1, ta có
loga(b1b2) = logab1+ logab2.
II. Quy tắc tính lôgarit
Ví dụ 3: Tính log69 + log64 .
Giải: log69 + log64 = log6(9.4) = log636 = log662 = 2 .
Chú ý: Định lí 1 có thể mở rộng cho n số dương :
loga(b1b2…bn) = logab1 + logab2 + …+ logabn
(a, b1, b2, bn > 0, a khác 1).
HĐ6: Tính log1/22 +2log1/2(1/3) + log1/2(3/8) .
Giải:
log1/22 +2log1/2(1/3) + log1/2(3/8) =
= log1/22 + log1/2(1/3) + log1/2(1/3) + log1/2(3/8) =
= log1/2(2.1/3.1/3.3/8) = log1/2(1/12) .
III. Hướng dẫn học bài ở nhà
Nắm vững định nghĩa, quy tắc tính lôgarit của một tích để vận dụng vào việc giải bài tập.
Làm các bài tập 1, 2 trong SGK trang 68.
Xem trước phần II2, II3, III, IV, V trong §3.
Mục đích, yêu cầu
1. Hiểu và biết vận dụng định nghĩa, các quy tắc tính lôgarit.
2. Biết vận dụng lôgarit để giải toán.
B. Nội dung bài học
Khái niệm lôgarit.
Định nghĩa.
Tính chất.
II. Quy tắc tính lôgarit.
Lôgarit của một tích.
C. Tiến trình bày học
HĐ1: Tìm x để:
a) 2x = 8;
b) 2x = ¼;
c) 3x = 81;
d) 5x = 1/125.
2x = 8 2x = 23 x = 3
2x = ¼ 2x = 2-2 x = -2
3x = 81 3x = 34 x = 4
5x = 1/125 5x = 5-3 x = -3
I. Khái niệm lôgarit
? Tìm x để: 2x = 7 (*)
Nhận xét:
Từ bài toán (*) dẫn đến bài toán tổng quát là: Cho số dương a,Tìm x trong phương trình
ax = b (1)
Người ta chứng minh được rằng với hai số dương a, b, a khác 1, luôn tồn tại duy nhất số x sao cho ax = b.
Từ nhận xét ở trên dẫn đến khái niệm lấy lôgarit của một số như sau:
1. Định nghĩa: Cho hai số dương a, b với a khác 1. Số x thoả mãn đẳng thức ax = b được gọi là lôgarit cơ số a của b và kí hiệu là logab.
I. Khái niệm lôgarit
Ta tìm x trong (*) ntn?
x = logab ax = b
I. Khái niệm lôgarit
Ví dụ 1:
log28 = 3 vì 23 = 8 b) log1/39 = -2 vì (1/3)-2 = 9
HĐ2:
Tính log1/24, log31/27.
Có các số x, y nào để 3x = 0, 2y = -3 hay không?
Giải:
log1/24 = -2 vì (1/2)-2 = 4 log31/27 = -3 vì 3-3 = 1/27
Không tồn tại số x, y như vậy.
Chú ý: Không có logarit của số âm và số 0.
I. Khái niệm lôgarit
2. Tính chất: Với hai số a, b, a khác 1. Ta có các tính chất sau:
HĐ3: Chứng minh
loga1 = 0 ,
logaa = 1,
alogab = b,
logaax =x.
loga1 = 0 a0 = 1.
logaa = 1 a1 = a.
Từ ĐN ta có
x = logab ax = b alogab = b.
logaax = x ax = ax .
I. Khái niệm lôgarit
Ví dụ 2:
32log35 = (3log35)2 = 52 = 25.
log1/28 = log1/2(1/2)-3 = -3.
HĐ4: Tính
4log2(1/7) = ? b) (1/25)log5(1/3) = ?
Giải:
4log2(1/7) = (22)log2(1/7) =
= [2log2(1/7))2]2 = (1/7)2 = 1/49.
(1/25)log5(1/3) = (5-2)log5(1/3) =
= [5log5(1/3) ]-2 = (1/3)-2 = 9.
II. Quy tắc tính lôgarit
HĐ5: Cho b1 = 23 , b2 = 25.
Tính log2b1 + log2b2; log2(b1b2) và so sánh kết quả.
Giải:
log2b1 + log2b2 = log223 + log225 = 3 + 5 = 8.
log2(b1.b2) = log2(2325) = log228 = 8.
Vậy: log223 + log225 = log2(2325).
? Vấn đề đặt ra là nếu ta thay b1, b2 bởi các số dương tuỳ ý và thay số 2 ở trên bởi một số dương a khác 1 thì đẳng thức trên có còn đứng hay không?
Chúng ta đi nghiên cứu vấn đề này !
II. Quy tắc tính lôgarit
1.Lôgarit của một tích
Định lí 1:
Lôgarit của một tích bằng tổng các lôgarit
Chứng minh:
Đặt x1 = logab1, x2 = logab2, ta có
x1 + x2 = logab1+ logab2 . (1)
Mặt khác, vì b1 = ax1, b2 = ax2, suy ra b1b2 = ax1ax2 = ax1+ x2 .
Do đó x1 + x2 = loga(b1b2) . (2)
Từ (1) và (2) suy ra loga(b1b2) = logab1 + logab2 . ■
Cho ba số dương a, b1, b2 , a khác 1, ta có
loga(b1b2) = logab1+ logab2.
II. Quy tắc tính lôgarit
Ví dụ 3: Tính log69 + log64 .
Giải: log69 + log64 = log6(9.4) = log636 = log662 = 2 .
Chú ý: Định lí 1 có thể mở rộng cho n số dương :
loga(b1b2…bn) = logab1 + logab2 + …+ logabn
(a, b1, b2, bn > 0, a khác 1).
HĐ6: Tính log1/22 +2log1/2(1/3) + log1/2(3/8) .
Giải:
log1/22 +2log1/2(1/3) + log1/2(3/8) =
= log1/22 + log1/2(1/3) + log1/2(1/3) + log1/2(3/8) =
= log1/2(2.1/3.1/3.3/8) = log1/2(1/12) .
III. Hướng dẫn học bài ở nhà
Nắm vững định nghĩa, quy tắc tính lôgarit của một tích để vận dụng vào việc giải bài tập.
Làm các bài tập 1, 2 trong SGK trang 68.
Xem trước phần II2, II3, III, IV, V trong §3.
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Quốc Tuấn
Dung lượng: |
Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)