Chương II. §3. Hàm số bậc hai

Chia sẻ bởi Nguyễn Tiến Trung | Ngày 08/05/2019 | 103

Chia sẻ tài liệu: Chương II. §3. Hàm số bậc hai thuộc Đại số 10

Nội dung tài liệu:

Chào mừng quý thầy, cô giáo
đến dự giờ, thăm lớp!
Chào các em học sinh !
Em hãy cho biết: Các đồ thị sau là đồ thị của hàm số nào ?
y = ax2 ( a > 0)
y = ax2 ( a < 0 )
Hãy nêu đặc điểm của đồ thị hàm số và tính chất của hàm số?
Hàm số bậc hai là hàm số được cho bởi
công thức: y = ax2 + bx + c
Trong đó a , b , c là các hệ số , a ≠ 0
Tập xác định của hàm số là : IR
1 .Định
nghĩa
Tịnh tiến đồ thị hs y=ax2 song song trục Ox sang phải m đơn vị với m dương ta được đồ thị hàm số nào ?
x
O
y
m
y = a(x + m)2
1 .Định
nghĩa
2. Đồ thị
hàm số
bậc hai
Tịnh tiến đồ thị hs y=ax2 song song trục Ox sang phải m đơn vị với m dương ta được đồ thị hàm số nào ?
x
O
y
m
Tịnh tiến đồ thị hs y=a(x + m)2 song song trục Oy lên trên n đơn vị với n dương ta được đồ thị hàm số nào ?
+n
1 .Định
nghĩa
2. Đồ thị
hàm số
bậc hai
Hàm số y = a( x + m )2 + n (1) có đồ thị là một Parabol có đỉnh I(m;n). Trục đối xứng là đường thẳng x = n . Quay bề lõm lên trên khi a > 0 , xuống dưới khi a < 0
Hãy biến đổi hàm số y = ax2 + bx + c (a khác 0)
về dạng (1) và nêu cách vẽ đồ thị hàm số này ?
y = ax2 + bx + c
1 .Định
nghĩa
2. Đồ thị
hàm số
bậc hai
y = ax2 + bx + c
x
O
y
y = a(x + m)2
1 .Định
nghĩa
2. Đồ thị
hàm số
bậc hai
y = ax2 + bx + c
x
O
y
1 .Định
nghĩa
2. Đồ thị
hàm số
bậc hai
+n
x
O
y
x
O
y
Đồ thị hàm số y = ax2 + bx +c
a > 0
a < 0
I
I
Hãy nêu các bước vẽ trực tiếp đồ thị hàm số y = ax2 + bx + c ( Không dựa vào đồ thị hàm số y = ax2) ?
1 .Định
nghĩa
2. Đồ thị
hàm số
bậc hai
I
Để vẽ đường parabol y = a.x2 + b.x +c (a≠0), ta thực hiện các bước:
3. Xác định toạ độ các giao điểm của parabol với trục tung (điểm (0;c)) và trục hoành (nếu có).
Xác định thêm một số điểm thuộc đồ thị, chẳng hạn điểm đối xứng với điểm (0;c) qua trục đối xứng của parabol.
4. Vẽ parabol
1 .Định
nghĩa
2. Đồ thị
hàm số
bậc hai
Vẽ đồ thị các hàm số sau :
1/ y = x2 – 4x + 3 ; 2/ y = - x2 + 3x - 2
GIẢI :
1/ y = x2 – 4x + 3
Đỉnh I( -2 ; 1)
;
-Trục đối xứng : x = 2
-Các điểmcắt Ox: (1;0) ; (3;0)
-Điểm cắt Oy : (0;3)
-Điểm đối xứng với điểm cắt Oy qua trục đối xứng ( 4;3)
3
3
1
2
4
1 .Định
nghĩa
2. Đồ thị
hàm số
bậc hai
I
Đỉnh
;
-Trục đối xứng:
-Các điểmcắt Ox: (1;0) ; (2;0)
-Điểm cắt Oy : (0;-2)
-Điểm đối xứng với điểm cắt Oy qua trục đối xứng
GIẢI :
y
x
o
-2
2
1
2/ y = - x2 + 3x - 2
1 .Định
nghĩa
2. Đồ thị
hàm số
bậc hai
3. Sự biến
thiên của
hs bậc hai
x
O
y
x
O
y
Đồ thị hàm số y = ax2 + bx +c
a > 0
a < 0
I
I
Hãy dựa vào đồ thị để nêu tính chất biến
thiên và lập BBT của hàm số y = ax2+ bx +c ?
1 .Định
nghĩa
2. Đồ thị
hàm số
bậc hai
1. Định nghĩa
2. Đồ thị hàm số bậc hai

3. Sự biến thiên của hs bậc hai

Bảng biến thiên của hàm số y = ax2 + bx + c
a > 0
a < 0
1. Định nghĩa
BÀI TẬP
Trong khoảng ( -1;2) các hàm số sau hàm số nào đồng biến ? Hàm số nào nghịch biến?
a/ y = x2- 5x +3
c/ y = -2x2 – 7x +4
d/ y = 4x2 + x - 1
Đồng biến
Đồng biến
Nghịch biến
Không đơn điệu
2. Đồ thị hàm số bậc hai

3. Sự biến thiên của hs bậc hai

Xin chân thành cảm ơn quý thầy cô cùng các em đã tham dự tiết học!
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Tiến Trung
Dung lượng: | Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)