Chương II. §2. Đường kính và dây của đường tròn

Chia sẻ bởi Trịnh Văn Hùng | Ngày 22/10/2018 | 36

Chia sẻ tài liệu: Chương II. §2. Đường kính và dây của đường tròn thuộc Hình học 9

Nội dung tài liệu:

Phòng gd - đt thanh liêm
Trường THCS Liêm Túc
BÀI GIẢNG ĐIỆN TỬ TOÁN 9
Gv: Trịnh Văn Hùng
Liêm Túc , ng�y 1 thỏng 12 nam 2012
Tiết 22
ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRÒN
1
KIỂM TRA
10
Cho tam giác vuông ABC có c¸c cạnh là 6cm 8cm,10cm
A.10cm B. 5cm
C. 3cm D. 4cm
.
O
8
6
A
C
B
Bán kính của đường tròn ngoại tiếp tam giác này là:
B
Trong hình vẽ trên hãy cho biết đường kính và các dây của đường tròn tâm O
Trả lời:
+Du?ng kớnh: BC
+Dõy: -BC di qua tõm O
-AB, AC khụng di qua tõm O
10


Đ2. Du?ng kớnh v� dõy c?a du?ng trũn
1. So sánh độ dài của đường kính và dây
Bài toán 1:
Gọi AB là một dây bất kì của đường tròn (O ; R). Chứng minh rằng AB 2R.
�2. ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRÒN
Giải:
TH1: AB là đường kính.
Ta có AB = 2R
TH2: AB không là đường kính.
Xét ?AOB, ta có
AB < AO + OB = R + R = 2R

V�y ta lu�n c� : AB ? 2R

Câu hái :
Trong c¸c d©y cña ®­êng trßn (O, R ) d©y lín nhÊt cã ®é dµi b»ng bao nhiªu ? §­êng kÝnh cã lµ d©y cña ®­êng trßn kh«ng?



Trả lời:

+ Dây lớn nhất là đường kính

+Dây lớn nhất có độ dài bằng 2R
1. So sánh độ dài của đường kính và dây
Định lí 1
Trong các dây của đường tròn, dây lớn nhất là đường kính.
2. Quan hệ vuông góc giữa đường kính và dây
Bài toán 2:
Cho đường tròn (O; R), đường kính AB vuông góc với dây CD tại I. Chứng minh rằng IC = ID.
Giải:
TH1: CD là đường kính.
TH2: CD không là đường kính.
Xét ?COD có:
OC = OD (= R) nên nó cân tại O
OI là đường cao nên cũng là đường trung tuyến,
do đó IC = ID.
Định lí 2
Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.
�2. ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRÒN
.
C
D
B
O I
A
.
//
D
o
A
I
B
//
C
1. So sánh độ dài của đường kính và dây
Định lí 1
Trong các dây của đường tròn, dây lớn nhất là đường kính.
2. Quan hệ vuông góc giữa đường kính và dây
Giải:
TH1: CD là đường kính.
TH2: CD không là đường kính.
Xét ?COD có:
OC = OD (= R) nên nó cân tại O
OI là đường cao nên cũng là đường trung tuyến,
do đó IC = ID.
Định lí 2
Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.
�2. ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRÒN
.
C
D
B
O I
A
.
//
D
o
A
I
B
//
C
Trong một đường tròn, đường kính đi qua trung điểm của một dây thì vuông góc với dây ấy.
Trong một đường tròn, đường kính đi qua trung điểm của một dây thì vuông góc với dây ấy.
Trong một đường tròn, đường kính đi qua trung điểm của một dây
1. So sánh độ dài của đường kính và dây
Định lí 1
Trong các dây của đường tròn, dây lớn nhất là đường kính.
2. Quan hệ vuông góc giữa đường kính và dây
Định lí 2
Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.
TH1: Dây CD không đi qua tâm
TH2: Dây CD đi qua tâm
Xét ?COD có:
OC = OD (= R) nên nó cân tại O
OI là đường trung tuyến nên cũng là đường cao ,
Mệnh đề đảo không đúng
không đi qua tâm
Định lí 3
�2. ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRÒN
Trong một đường tròn, đường kính đi qua trung điểm của một dây thì vuông góc với dây ấy.
Trong một đường tròn, đường kính đi qua trung điểm của một dây
1. So sánh độ dài của đường kính và dây
Định lí 1
Trong các dây của đường tròn, dây lớn nhất là đường kính.
2. Quan hệ vuông góc giữa đường kính và dây
Định lí 2
Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.
TH1: Nếu dây CD không đi qua tâm
TH2: Nếu dây CD đi qua tâm
Xét ?COD có:
OC = OD (= R) nên nó cân tại O
OI là đường trung tuyến cũng là đường cao.
Mệnh đề đảo không đúng
không đi qua tâm
Định lí 3
Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy.
�2. ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRÒN
1. So sánh độ dài của đường kính và dây
Định lí 1
Trong các dây của đường tròn, dây lớn nhất là đường kính.
2.Quan hệ vuông góc giữa đường kính và dây
Định lí 2
Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.
Định lí 3
Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy.
�2. ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRÒN
A. Trong m�t ���ng tr�n, ���ng k�nh kh�ng ph�i
l� d�y lín nh�t.
Bài tập1: Phát biểu nào sau đây là đúng?
C. ���ng k�nh �i qua trung �iĨm cđa m�t d�y
�i qua t�m th� vu�ng g�c víi d�y �y.
B. ���ng k�nh vu�ng g�c víi m�t d�y th� �i qua
trung �iĨm cđa d�y �y.
Củng cố
1. So sánh độ dài của đường kính và dây
Định lí 1
Trong các dây của đường tròn, dây lớn nhất là đường kính.
2. Quan hệ vuông góc giữa đường kính và dây
Định lí 2
Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.
Định lí 3
Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy.
Bài tập 1:
Cho hình vẽ. Hãy tính độ dài dây AB, biết OA = 13cm, AM = MB, OM = 5cm.
Giải:
Xét tam giác vuông MOA có: AO2 = AM2 + OM2 (Pitago)
=> AM2 = OA2 - OM2 =132 - 52 = 144
=>AM = 12cm, do đo �AB = 24cm.
0:0
0:1
0:2
0:3
0:4
0:5
0:6
0:7
0:8
0:9
0:10
0:11
0:12
0:13
0:14
0:15
0:16
0:17
0:18
0:19
0:20
0:21
0:22
0:23
0:24
0:25
0:26
0:27
0:28
0:29
0:30
0:31
0:32
0:33
0:34
0:35
0:36
0:37
0:38
0:39
0:40
0:41
0:42
0:43
0:44
0:45
0:46
0:47
0:48
0:49
0:50
0:51
0:52
0:53
0:54
0:55
0:56
0:57
0:58
0:59
1:0
1:1
1:2
1:3
1:4
1:5
1:6
1:7
1:8
1:9
1:10
1:11
1:12
1:13
1:14
1:15
1:16
1:17
1:18
1:19
1:20
1:21
1:22
1:23
1:24
1:25
1:26
1:27
1:28
1:29
1:30
1:31
1:32
1:33
1:34
1:35
1:36
1:37
1:38
1:39
1:40
1:41
1:42
1:43
1:44
1:45
1:46
1:47
1:48
1:49
1:50
1:51
1:52
1:53
1:54
1:55
1:56
1:57
1:58
1:59
2:0
2:1
2:2
2:3
2:4
2:5
2:6
2:7
2:8
2:9
2:10
2:11
2:12
2:13
2:14
2:15
2:16
2:17
2:18
2:16
2:20
2:21
2:22
2:23
2:24
2:25
2:26
2:27
2:28
2:29
2:30
2:31
2:32
2:33
2:34
2:35
2:36
2:37
2:38
2:39
2:40
2:41
2:42
2:43
2:44
2:45
2:46
2:47
2:48
2:49
2:50
2:51
2:52
2:53
2:54
2:55
2:56
2:57
2:58
2:59
3:0
Hết giờ
�2. ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRÒN
a) Gọi M là trung điểm của BC.

b)Trong đường tròn nói trên, DE là dây, BC là đường kính nên DE < BC
Bài tập1O: Cho ?ABC, các đường cao BD và CE. Chứng minh rằng:
a) Bốn điểm B, E, D, C cùng thuộc một đường tròn.
b) DE < BC.
HOẠT ĐỘNG 5: Hướng dẫn về nhà
Định lí 1
Trong các dây của đường tròn, dây lớn nhất là đường kính.
Định lí 2
Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.
Định lí 3
Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy.
- Học thuộc và hiểu kĩ 3 định lí đã học.
- Làm bài tập 10, 11 (SGK); bài tập 16, 18, 19, 20, 21 (SBT)
- Xem trước bài mới
�2. ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRÒN
Cảm ơn thầy cô giáo
đã về dự giờ học hôm nay
Liên hệ thực tế
Hãy xác định tâm của một nắp hộp hình tròn
D
C
B
o
A
*Vẽ dây CD bất kỳ. Lấy I là trung điểm của CD. *Dựng đường thẳng vuông góc với CD tại I cắt đường tròn tại hai điểm A, B *AB chính là đường kính của nắp hộp *Trung điểm O của AB là tâm của nắp hộp tròn.
I
.
.
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Trịnh Văn Hùng
Dung lượng: | Lượt tài: 4
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)