Cách giải bài toán liên quan về Ma trận

Chia sẻ bởi hoàng thị mạnh | Ngày 26/04/2019 | 162

Chia sẻ tài liệu: cách giải bài toán liên quan về Ma trận thuộc Toán học

Nội dung tài liệu:

MỞ ĐẦU
Lý do chọn đề tài
Toán học là một trong những môn học quan trọng trong các trường trung học phổ thông cũng như trong các trường đại học, đặc biệt đối với các ngành sư phạm toán. Đây là môn học tương đối khó mang tính tư duy cao đồi hỏi người học phải chịu khó tìm tòi, khám phá và say mê nghiên cứu. Một trong những đề tài lý thú của bộ môn này là “Ma trận” đã lôi cuốn nhiều nhà toán học cũng như các sinh viên ngành Toán tham gia nghiên cứu và đã đạt được những kết quá sâu sắc.
Ma trận đã được nghiên cứu từ thời xa xưa, thời tiền sử đã có khái niệm hình vuông Latin và hình vuông kì diệu. Lịch sử hiện đại ma trận gắn liền với việc giải phương trình tuyến tính. Ma trận có rất nhiều ứng dụng quan trọng. Trong đại số tuyến tính ma trận dùng để lưu trữ các hệ số của hệ phương trình tuyến tính và biến đổi tuyến tính. Trong lý thuyết đồ thị ma trận thường dùng để biểu diển đồ thị....Ngoài ra còn có nhiều ứng dụng quan trọng khác nữa.Chính vì thế đây cũng là một nội dung thi trong kỳ thi Olympic sinh viên của Việt Nam và thế giới. Đã có rất nhiều tài liệu về nội dung này tuy nhiên chưa có tài liệu trình bày một cách cụ thể, phân loại các dạng toán, hệ thống các phương pháp giải một cách rõ ràng.
Xuất phát từ lý do trên em đã chọn và nghiên cứu đề tài “Một số dạng toán trong ma trận”
Mục đích nghiên cứu
Thông qua đề tài này em muốn giới thiệu cho các bạn đam mê Toán, sinh viên ngành sư phạm Toán một số vấn đề cơ bản liên quan tới các bài toán về ma trận. Đề tài đi sâu vào nghiên cứu những bài toán có trong các đề thi Olympic của các năm, nhằm mục đích giúp cho bạn đọc có một cách nhìn tổng quan về ma trận và rút ra những kinh ngiệm trong giải toán tuyến tính.
Đối tượng nghiên cứu và phạm vi nghiên cứu
Đối tượng ngiên cứu: Lý thuyết về ma trận, sử dụng nội dung cốt lõi của lý thuyết để phân loại từng dạng toán.
Phạm vi nghiên cứu: Các dạng toán về ma trận, tập trung chủ yếu là các bài toán được trích từ đề thi Olympic Toán toàn quốc
Giả thuyết khoa học
Nếu xây dựng thành công đề tài này sẽ giúp các bạn đọc có kiến thức cơ bản về các dạng toán trong ma trận. Từ đó phát huy cao tính tích cực chủ động tìm tòi khám phá của bạn đọc.
Nhiệm vụ nghiên cứu
Hệ thống lại kiến thức lý thuyết một cách tổng quát về ma trận để xây dựng và phân loại các dạng bài toán về ma trận
Đưa ra các phương pháp giải phù hợp của một bài toán ma trận
Xây dựng hệ thống bài toán phân loại các dạng toán và tìm hướng giải phù hợp
Rút ra điểm cần lưu ý cho một số dạng toán
Phương pháp nghiên cứu
Phương pháp nghiên cứu lý luận: Đọc tài liệu liên quan tới ma trận
Phương pháp tổng kết kinh nghiệm: Tổng kết kinh nghiệm của bản thân, các bạn đọc, anh chị xung quanh để tổng hợp và hệ thống các kiến thức vấn đề nghiên cứu đầy đủ và khoa học kết hợp với đưa ra các ví dụ cụ thể để minh họa chi tiết.
Phương pháp lấy ý kiến chuyên gia: Lấy ý kiến của giảng viên để hoàn thành về mặt nội dung cũng như hình thức của đề tài nghiên cứu.
Cấu trúc đề tài
Phần 1: Mở đầu
Phần 2: Nội dung
I. Định thức của ma trận
1. Khai triển theo dòng hoặc cột
2. Đưa về ma trận tam giác
3. Sử dụng tính đa tuyến tính
II. Ma trận nghịch đảo
1. Phương pháp giải hệ
2. Biến đổi sơ cấp dòng
III. Hạng của ma trận
1. Dùng định thức con
2. Dùng các phép biển đổi cấp dòng hoặc cột
IV. Vết của một ma trận
V. Véc tơ riêng – giá trị riêng – đa thức đặc trưng của ma trận
NỘI DUNG
Định thức của ma trận
Khai triển theo dòng hoặc cột
Bài toán
Cho 2 ma trận thực vuông đồng cấp A và b. giả thiết rằng det(A+B) # 0 và det(A-B) # 0. Đặt M = . Chứng minh detM # 0.
Giải
Ta có: detM = là định thức cấp 2n. Nhân (-1) vào cột n+i và cộng vào cột i (i =1, 2,3,...,n) thì định thức không thay đổi, do đó
detM=
ta lại nhân (1) vào hàng n + i và cộng vào hàng i (i=1,2,...,n)thì định thức không thay đổi,do đó
detM=
khai triển
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: hoàng thị mạnh
Dung lượng: | Lượt tài: 2
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)