Các bài Luyện tập
Chia sẻ bởi Lương Văn Giang |
Ngày 22/10/2018 |
54
Chia sẻ tài liệu: Các bài Luyện tập thuộc Hình học 9
Nội dung tài liệu:
Tiết 47 – Cung chứa góc
LUYỆN TẬP
Hình minh họa 1
Hình minh họa 2
Câu 1: Phát biểu quỹ tích cung chứa góc?
Câu 2: Nếu góc AMB = 900 thì quỹ tích của điểm M là gì?
Câu 3: Hãy nêu các bước giải một bài toán dựng hình ?
Bước 1: Phân tích.
Bước 2 : Cách dựng.
Bước 3: Chứng minh
( phần thuận, phần đảo)
Bước 4: kết luận.
Giải toán dựng hình:
BÀI SỐ 49:(SGK Tr87)
Dựng tam giác ABC.
Biết BC = 6cm, góc A = 400 và đường cao AH = 4 cm.
400
A
B
C
6cm
4cm
H
BÀI SỐ 49:(SGK Tr87)
Bước 1.Phân tích:
Giả sử tam giác ABC đã dựng được, với: BC = 6cm, góc A = 40 và đường cao AH = 4 cm.
Khi đó: * cạnh BC = 6cm dựng được ngay.
* Dựng đỉnh A phải thỏa mãn điều kiện:
Đỉnh A phải nhìn BC không đổi dưới một góc bằng 400 và cách BC một khoảng bằng 4cm.
( Có nghĩa A phải nằm trên cung chứa góc 400 vẽ trên BC và A phải nằm trên đường thẳng xy // BC, cách BC là 4cm.)
BÀI SỐ 49:(SGK Tr87)
Bước 2 Cách dựng:
-Dựng đoạn thẳng BC = 6cm.
- Dựng cung chứa góc 400 trên đoạn thẳng BC.
-Nối AB, AC, A’B, A’C Ta được 2 tam giác A’BC là tam giác cần dựng.
-Dựng đường thẳng xy // BC, cách BC 4cm, xy cắt cung chứa góc tại A và A’.
B
C
O
400
x
y
A
A’
Bước 3 :Chứng minh:
Theo cách dựng tam giác ABC.Thỏa mãn
BC = 6cm, góc A = 400 , AH = 4 cm.
Bước 4 :Kết luận:
Dựng được hai tam giác ABC, A’BC thỏa mãn yêu cầu của bài toán.
H
K
I
4cm
4cm
BÀI SỐ 51:(SGK Tr87)
B
C
O
I
H
Cho I,O lần lượt là tâm đường trong nội tiếp, tâm đường tròn ngoại tiếp tam giác ABC với góc A = 600. Gọi H là giao điểm của các đường cao BB’ và CC’. Chứng minh các điểm : B, C, O, H, I cùng thuộc đường tròn.
BÀI SỐ 51:(SGK Tr87)
GT:
KL:
Cho I là tâm đường trong nội tiếp ABC
O là tâm đường tròn ngoại tiếp ABC,
H là giao điểm của các đường cao BB’ và CC’.
CM: điểm B, C, O, H, I cùng thuộc đường tròn.
Hãy nêu giả thiết kết luận của bài toán?
A
B
C
600
I
Tìm góc BIC:?
ABC có :
BÀI SỐ 51:(SGK Tr87)
GT:
KL:
Cho I là tâm đường trong nội tiếp ABC
O là tâm đường tròn ngoại tiếp ABC,
H là giao điểm của các đường cao BB’ và CC’.
CM: điểm B, C, O, H, I cùng thuộc đường tròn.
A
B
C
600
O
Hỏi khoảng cách từ O đến các đỉnh tam giác ABC?
Tìm góc BOC:?
BÀI SỐ 51:(SGK Tr87)
GT:
KL:
Cho I là tâm đường trong nội tiếp ABC
O là tâm đường tròn ngoại tiếp ABC,
H là giao điểm của các đường cao BB’ và CC’.
CM: điểm B, C, O, H, I cùng thuộc đường tròn.
A
B
C
600
H
B’
C’
Tứ giác AB’ HC’ có:
(2 góc đ /đỉnh)
Tìm góc BHC:?
BÀI SỐ 51:(SGK Tr87)
Giải :
Tứ giác AB’ HC’ có:
Vậy: nhìn đoạn thẳng BC cố định suy ra H,I,O thuộc cung chứa góc dựng trên đoạn BC .
Hay 5 điểm : B,H,I,O,C cùng thuộc một đường tròn .
(2 góc đ /đỉnh)
ABC có :
CỦNG CỐ
Cách dựng:
Quỹ tích cung chứa góc.
* Một tam giác.
*Một cung chứa góc.
1
3
*Tâm đường tròn nội - ngoại tiếp một tam giác.
*Đường trung trực của một đoạn thẳng.
Cách giải một bài toán dựng hình.
2
HƯỚNG DẪN HỌC Ở NHÀ:
Làm các bài tập sau :
50,52 (Tr 87.SGK).
35,36 (Tr 79. SBT).
Đọc trước bài 7 :
TỨ GIÁC NỘI TIẾP.
LUYỆN TẬP
Hình minh họa 1
Hình minh họa 2
Câu 1: Phát biểu quỹ tích cung chứa góc?
Câu 2: Nếu góc AMB = 900 thì quỹ tích của điểm M là gì?
Câu 3: Hãy nêu các bước giải một bài toán dựng hình ?
Bước 1: Phân tích.
Bước 2 : Cách dựng.
Bước 3: Chứng minh
( phần thuận, phần đảo)
Bước 4: kết luận.
Giải toán dựng hình:
BÀI SỐ 49:(SGK Tr87)
Dựng tam giác ABC.
Biết BC = 6cm, góc A = 400 và đường cao AH = 4 cm.
400
A
B
C
6cm
4cm
H
BÀI SỐ 49:(SGK Tr87)
Bước 1.Phân tích:
Giả sử tam giác ABC đã dựng được, với: BC = 6cm, góc A = 40 và đường cao AH = 4 cm.
Khi đó: * cạnh BC = 6cm dựng được ngay.
* Dựng đỉnh A phải thỏa mãn điều kiện:
Đỉnh A phải nhìn BC không đổi dưới một góc bằng 400 và cách BC một khoảng bằng 4cm.
( Có nghĩa A phải nằm trên cung chứa góc 400 vẽ trên BC và A phải nằm trên đường thẳng xy // BC, cách BC là 4cm.)
BÀI SỐ 49:(SGK Tr87)
Bước 2 Cách dựng:
-Dựng đoạn thẳng BC = 6cm.
- Dựng cung chứa góc 400 trên đoạn thẳng BC.
-Nối AB, AC, A’B, A’C Ta được 2 tam giác A’BC là tam giác cần dựng.
-Dựng đường thẳng xy // BC, cách BC 4cm, xy cắt cung chứa góc tại A và A’.
B
C
O
400
x
y
A
A’
Bước 3 :Chứng minh:
Theo cách dựng tam giác ABC.Thỏa mãn
BC = 6cm, góc A = 400 , AH = 4 cm.
Bước 4 :Kết luận:
Dựng được hai tam giác ABC, A’BC thỏa mãn yêu cầu của bài toán.
H
K
I
4cm
4cm
BÀI SỐ 51:(SGK Tr87)
B
C
O
I
H
Cho I,O lần lượt là tâm đường trong nội tiếp, tâm đường tròn ngoại tiếp tam giác ABC với góc A = 600. Gọi H là giao điểm của các đường cao BB’ và CC’. Chứng minh các điểm : B, C, O, H, I cùng thuộc đường tròn.
BÀI SỐ 51:(SGK Tr87)
GT:
KL:
Cho I là tâm đường trong nội tiếp ABC
O là tâm đường tròn ngoại tiếp ABC,
H là giao điểm của các đường cao BB’ và CC’.
CM: điểm B, C, O, H, I cùng thuộc đường tròn.
Hãy nêu giả thiết kết luận của bài toán?
A
B
C
600
I
Tìm góc BIC:?
ABC có :
BÀI SỐ 51:(SGK Tr87)
GT:
KL:
Cho I là tâm đường trong nội tiếp ABC
O là tâm đường tròn ngoại tiếp ABC,
H là giao điểm của các đường cao BB’ và CC’.
CM: điểm B, C, O, H, I cùng thuộc đường tròn.
A
B
C
600
O
Hỏi khoảng cách từ O đến các đỉnh tam giác ABC?
Tìm góc BOC:?
BÀI SỐ 51:(SGK Tr87)
GT:
KL:
Cho I là tâm đường trong nội tiếp ABC
O là tâm đường tròn ngoại tiếp ABC,
H là giao điểm của các đường cao BB’ và CC’.
CM: điểm B, C, O, H, I cùng thuộc đường tròn.
A
B
C
600
H
B’
C’
Tứ giác AB’ HC’ có:
(2 góc đ /đỉnh)
Tìm góc BHC:?
BÀI SỐ 51:(SGK Tr87)
Giải :
Tứ giác AB’ HC’ có:
Vậy: nhìn đoạn thẳng BC cố định suy ra H,I,O thuộc cung chứa góc dựng trên đoạn BC .
Hay 5 điểm : B,H,I,O,C cùng thuộc một đường tròn .
(2 góc đ /đỉnh)
ABC có :
CỦNG CỐ
Cách dựng:
Quỹ tích cung chứa góc.
* Một tam giác.
*Một cung chứa góc.
1
3
*Tâm đường tròn nội - ngoại tiếp một tam giác.
*Đường trung trực của một đoạn thẳng.
Cách giải một bài toán dựng hình.
2
HƯỚNG DẪN HỌC Ở NHÀ:
Làm các bài tập sau :
50,52 (Tr 87.SGK).
35,36 (Tr 79. SBT).
Đọc trước bài 7 :
TỨ GIÁC NỘI TIẾP.
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Lương Văn Giang
Dung lượng: |
Lượt tài: 6
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)