BỘ ĐỀ ÔN THI HK2 TIẾNG ANH 9

Chia sẻ bởi Lê Anh Dũng | Ngày 19/10/2018 | 52

Chia sẻ tài liệu: BỘ ĐỀ ÔN THI HK2 TIẾNG ANH 9 thuộc Tiếng Anh 9

Nội dung tài liệu:

ĐỀ SỐ 1
Bài 1: Giải phương trình và hệ phương trình trên:
 b) 
c)  d) 
Bài 2: Cho phương trình:  (x là ẩn số). Định giá trị của m để:
Phương trình có hai nghiệm . Tính  và  theo m.
Biểu thức  đạt giá trị nhỏ nhất.
Bài 3:
Vẽ đồ thị (P) của hàm số .
Tìm những điểm thuộc (P) có hoành độ bằng 2 lần tung độ.
Bài 4: Cho tam giác ABC nhọn (AB < AC) nội tiếp (O; R), các đường cao BD, CE cắt nhau tại H. AH cắt BC, DE lần lượt tại F và K.
Chứng minh rằng tứ giác ADHE nội tiếp đường tròn, xác định tâm I của đường tròn này.
Vẽ tia Cx là tiếp tuyến của (O) (tia Cx nằm trên nửa mặt phẳng bờ BC không chứa điểm A). Chứng minh rằng tứ giác ADFB nội tiếp đường tròn và Cx // DF.
Chứng minh rằng DH là tia phân giác của góc EDF và AF.HK = AK.HF.
Chứng minh rằng ΔFBK ~ ΔFIC, rồi suy ra K là trực tâm ΔIBC.

ĐỀ SỐ 2
Bài 1: (3 điểm) Giải các phương trình và hệ phương trình sau:
 b) 
c)  d) 
Bài 2: (1,5 điểm)
Vẽ đồ thị (P) của hàm số .
Tìm các điểm thuộc (P) sao cho hoành độ bằng tung độ.
Bài 3: (2 điểm) Cho phương trình bậc hai  (x là ẩn số).
Chứng minh phương trình luôn có nghiệm với mọi m.
Gọi  là hai nghiệm của phương trình. Tính  theo m.
Tìm m để  đạt giá trị lớn nhất.
Bài 4: (3,5 điểm) Từ điểm A ở ngoài đường tròn (O; R) (OA > 2R), vẽ hai tiếp tuyến AB, AC đến (O) (B, C là tiếp điểm).
Chứng minh tứ giác ABOC nội tiếp.
Gọi M là trung điểm của AC. Vẽ đường thẳng BM cắt (O) tại D, đường thẳng AD cắt (O) tại E. Chứng minh AB2 = AD.AE.
OA cắt BC tại H. Chứng minh tam giác MDC đồng dạng tam giác MCB suy ra tứ giác MDHC nội tiếp.
AE cắt BC tại N. Gọi I là trung điểm của DE. Tia OI cắt đường tròn (O) tại K, đường thẳng KN cắt (O) tại S. Vẽ đường thẳng AS cắt (O) tại Q.
Chứng minh: 3 điểm K, I, Q thẳng hàng.

ĐỀ SỐ 3
Bài 1: Giải các phương trình và hệ phương trình sau:
 b)  c) 
Bài 2: Cho hàm số  có đồ thị là (P).
Tìm a và vẽ (P) trên trục tọa độ Oxy biết (P) đi qua điểm .
Tìm tọa độ những điểm B thuộc (P) thỏa điều kiện 3 lần hoành độ bằng 2 lần tung độ.
Bài 3: Cho phương trình .
Chứng tỏ phương trình trên luôn có hai nghiệm  với mọi m.
Không giải phương trình hãy tính tổng và tích các nghiệm của phương trình trên.
Tìm giá trị m để phương trình trên có 2 nghiệm  thỏa .
Bài 4: Cho tam giác ABC nhọn (AB < AC) nội tiếp (O; R). Gọi H là giao điểm của ba đường cao AD, BE, CF của tam giác ABC (D thuộc BC, E thuộc AC, F thuộc AB).
Chứng minh: tứ giác CDHE nội tiếp. Xác định tâm M của đường tròn này.
Chứng minh: AF.AB = AH.AD.
Gọi K là giao điểm của đường tròn ngoại tiếp tứ giác CDHE và (O).
Chứng minh: OHKM là hình thang.
Gọi S là trung điểm của BH. Chứng minh: nếu EK vuông góc với BC thì 3 điểm K, D, S thẳng hàng.

ĐỀ SỐ 4
Bài 1: Giải phương trình và hệ phương trình sau:
 b) 
c)  d) 
Bài 2:
Vẽ đồ thị (P) của hàm số  và đồ thị (D) của hàm số  trên cùng một hệ trục tọa độ.
Tìm tọa độ giao điểm của (P) và (D) ở câu trên bằng phép tính.
Bài 3: Cho phương trình:  với m là tham số và x là ẩn số.
Tìm điều kiện của m để phương
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Lê Anh Dũng
Dung lượng: | Lượt tài: 0
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)