Bài tập hình học chương II
Chia sẻ bởi Dễ Nhớ Và Ít Nhất |
Ngày 18/10/2018 |
39
Chia sẻ tài liệu: Bài tập hình học chương II thuộc Hình học 9
Nội dung tài liệu:
* Vấn đề: định nghĩa và sự xác định đường tròn.
1. Tập hợp các điểm cách O cho trước một khoảng R không đổi gọi là đường tròn tâm O bán kính R. Kí hiệu: (O; R).
2. Để xác định được đường tròn ta có các cách sau:
Biết tâm O và bán kính R.
Biết 3 điểm không thẳng hàng nằm trên đường tròn.
3. Cho (O; R) và điểm M. Khi đó có các khả năng sau:
Nếu MO > R thì M nằm ngoài đường tròn (O; R).
Nếu MO=R thì M nằm trên đường tròn (O;R). Kí hiệu: M ( (O; R).
Nếu MO < R thì M nằm trong đường tròn (O; R).
4. Dây cung là đoạn thẳng nối hai điểm trên đường tròn. Đường kính là dây cung qua tâm. Vậy đường kính là dây cung lớn nhất trong một đường tròn.
5. Muốn c/m các điểm cùng nằm trên (O; R) ta chỉ ra khoảng cách từ mỗi điểm đến O đều là R.
6. Đường tròn qua hai điểm A và B có tâm nằm trên trung trực của AB.
7. Đường tròn ngoại tiếp tam giác vuông có tâm là trung điểm cạnh huyền.
Bài tập:
1. Cho hình chữ nhật ABCD có AB=12cm; BC=9cm.
a. C/m: A; B; C và D cùng thuộc một đường tròn.
b. Tính bán kính đường tròn đó.
2. Cho hình thoi ABCD; gọi O là giao điểm hai đường chéo. M, N, R và S là hình chiếu của O trên AB; BC; CD và DA. C/m 4 điểm M; N; R và S cùng thuộc một đường tròn.
3. Cho hình thang ABCD có đáy nhỏ AB và đáy lớn CD ; góc C = D = 600; CD=2AD. C/m 4 điểm A; B; C; D cùng thuộc một đường tròn
4. Cho hình vuông ABCD
a. CMR 4 đỉnh của hình vuông cùng năm trên 1 đường tròn. Hãy chỉ ra vị trí tâm của đường tròn đó.
b. Tính bán kính của đường tròn, biết cạnh góc vuông bằng 10dm.
* Vấn đề: tính chất đối xứng xủa đường tròn.
Đường tròn là hình có một tâm đối xứng là tâm đường tròn đó.
Đường tròn có vô số trục đối xứng là mỗi đường kính của nó.
Đường kính vuông góc dây cung thì đi qua trung điểm và ngược lại.
Hai dây cung bằng nhau khi và chỉ khi chúng cách đều tâm.
Dây cung nào gần tâm hơn thì dài hơn và ngược lại.
Vận dụng các tính chất trên ta có thể tính độ dài các đoạn và c/m các tính chất cũng như so sánh các đoạn thẳng dựa vào đường tròn.
Bài tập:
1. Cho (O) và một dây cung CD. Từ O kẽ tia vuông góc CD tại M cắt (O) tại H. Tính bán kính R của (O) biết: CD=16cm và MH=4cm.
2. Cho (O; 2cm), MN là một dây cung của đường tròn có độ dài bằng 2cm. Khi đó khoảng cách từ O đến MN là bao nhiêu?
3. Cho (O; 12cm) có đường kính CD. Vẽ dây MN qua trung điểm I của OC sao cho góc NID bằng 300. Tính MN.
4. Cho đường tròn (O) và cung BC có số đo là 600. Từ B kẽ dây BD vuông góc đường kính AC và từ D kẽ dây DF //AC. Tính số đo cung DC; AB; FD.
6. Một dây cung AB chia đường tròn (O) thành hai cung thỏa số đo cung AmB bằng hai lần số đo cung AnB.
a. Tính số đo hai cung trên.
b. Tính các góc của (AOB.
c. Tính khoảng cách từ O đến AB.
7. Một dây cung AB chia đường tròn (O) thành hai cung thỏa số đo cung AmB bằng ba lần số đo cung AnB.
a. Tính số đo hai cung trên.
b. Tính các góc của (AOB.
c. Tính khoảng cách từ O đến AB.
1) Cho đường tròn (O), đường kính AB. Gọi I là trung điểm OA, vẽ đường tròn tâm I bán kính IA.Trên đường tròn (I) lấy điểm M, tia AM cắt (O) tại điểm thứ hai N.
a) Hai đường tròn (O) và (I) có vị trí như thế nào ?
b) Chứng minh IM // ON.
c) Tìm vị trí của điểm M để BM là tiếp tuyến của đường tròn (I).
2) Cho nửa đường tròn (O),
1. Tập hợp các điểm cách O cho trước một khoảng R không đổi gọi là đường tròn tâm O bán kính R. Kí hiệu: (O; R).
2. Để xác định được đường tròn ta có các cách sau:
Biết tâm O và bán kính R.
Biết 3 điểm không thẳng hàng nằm trên đường tròn.
3. Cho (O; R) và điểm M. Khi đó có các khả năng sau:
Nếu MO > R thì M nằm ngoài đường tròn (O; R).
Nếu MO=R thì M nằm trên đường tròn (O;R). Kí hiệu: M ( (O; R).
Nếu MO < R thì M nằm trong đường tròn (O; R).
4. Dây cung là đoạn thẳng nối hai điểm trên đường tròn. Đường kính là dây cung qua tâm. Vậy đường kính là dây cung lớn nhất trong một đường tròn.
5. Muốn c/m các điểm cùng nằm trên (O; R) ta chỉ ra khoảng cách từ mỗi điểm đến O đều là R.
6. Đường tròn qua hai điểm A và B có tâm nằm trên trung trực của AB.
7. Đường tròn ngoại tiếp tam giác vuông có tâm là trung điểm cạnh huyền.
Bài tập:
1. Cho hình chữ nhật ABCD có AB=12cm; BC=9cm.
a. C/m: A; B; C và D cùng thuộc một đường tròn.
b. Tính bán kính đường tròn đó.
2. Cho hình thoi ABCD; gọi O là giao điểm hai đường chéo. M, N, R và S là hình chiếu của O trên AB; BC; CD và DA. C/m 4 điểm M; N; R và S cùng thuộc một đường tròn.
3. Cho hình thang ABCD có đáy nhỏ AB và đáy lớn CD ; góc C = D = 600; CD=2AD. C/m 4 điểm A; B; C; D cùng thuộc một đường tròn
4. Cho hình vuông ABCD
a. CMR 4 đỉnh của hình vuông cùng năm trên 1 đường tròn. Hãy chỉ ra vị trí tâm của đường tròn đó.
b. Tính bán kính của đường tròn, biết cạnh góc vuông bằng 10dm.
* Vấn đề: tính chất đối xứng xủa đường tròn.
Đường tròn là hình có một tâm đối xứng là tâm đường tròn đó.
Đường tròn có vô số trục đối xứng là mỗi đường kính của nó.
Đường kính vuông góc dây cung thì đi qua trung điểm và ngược lại.
Hai dây cung bằng nhau khi và chỉ khi chúng cách đều tâm.
Dây cung nào gần tâm hơn thì dài hơn và ngược lại.
Vận dụng các tính chất trên ta có thể tính độ dài các đoạn và c/m các tính chất cũng như so sánh các đoạn thẳng dựa vào đường tròn.
Bài tập:
1. Cho (O) và một dây cung CD. Từ O kẽ tia vuông góc CD tại M cắt (O) tại H. Tính bán kính R của (O) biết: CD=16cm và MH=4cm.
2. Cho (O; 2cm), MN là một dây cung của đường tròn có độ dài bằng 2cm. Khi đó khoảng cách từ O đến MN là bao nhiêu?
3. Cho (O; 12cm) có đường kính CD. Vẽ dây MN qua trung điểm I của OC sao cho góc NID bằng 300. Tính MN.
4. Cho đường tròn (O) và cung BC có số đo là 600. Từ B kẽ dây BD vuông góc đường kính AC và từ D kẽ dây DF //AC. Tính số đo cung DC; AB; FD.
6. Một dây cung AB chia đường tròn (O) thành hai cung thỏa số đo cung AmB bằng hai lần số đo cung AnB.
a. Tính số đo hai cung trên.
b. Tính các góc của (AOB.
c. Tính khoảng cách từ O đến AB.
7. Một dây cung AB chia đường tròn (O) thành hai cung thỏa số đo cung AmB bằng ba lần số đo cung AnB.
a. Tính số đo hai cung trên.
b. Tính các góc của (AOB.
c. Tính khoảng cách từ O đến AB.
1) Cho đường tròn (O), đường kính AB. Gọi I là trung điểm OA, vẽ đường tròn tâm I bán kính IA.Trên đường tròn (I) lấy điểm M, tia AM cắt (O) tại điểm thứ hai N.
a) Hai đường tròn (O) và (I) có vị trí như thế nào ?
b) Chứng minh IM // ON.
c) Tìm vị trí của điểm M để BM là tiếp tuyến của đường tròn (I).
2) Cho nửa đường tròn (O),
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Dễ Nhớ Và Ít Nhất
Dung lượng: |
Lượt tài: 4
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)