Bai tap ham so lien tuc

Chia sẻ bởi Phạm Lê Duy | Ngày 02/05/2019 | 47

Chia sẻ tài liệu: Bai tap ham so lien tuc thuộc Bài giảng khác

Nội dung tài liệu:

bài tập hàm số liên tục
kiến thức cơ bản
Định nghĩa hàm số liên tục tại một điểm.
Cho hàm số f(x) xác định trên (a,b).
Hàm số f(x) được gọi là liên tục tại điểm x0 ?(a,b) nếu:

lim f(x) = f(x0)
x? x0
Định nghĩa hàm số liên tục trên một khoảng
Hàm số f(x) xác định trên khoảng (a,b) được gọi là liên tục trên khoảng đó nếu nó liên tục tại mọi điểm của khoảng ấy.

Định nghĩa hàm số liên tục trên một đoạn
Hàm số f(x) xác định trên đoạn [a,b] được gọi là liên tục trên đoạn đó nếu nó liên tục trên khoảng (a,b) và
lim f(x) = f(a) ; lim f(x) = f(b)
x? a+ x? b-
Một số hàm số thường gặp liên tục trên tập xác định của nó

+ Hàm đa thức
+ Hàm số hữu tỉ
+ Hàm số lượng giác
bài tập

2x2-3x+1 với x > 0
f(x) =
1-x2 với x ? 0

xét sự liên tục của hàm số trên R
Giải: với x ? 0
? f(x) là các hàm đa thức nên nó liên tục
với x= 0
lim f(x) = lim (2x2-3x+1) = 1
x? 0 x? 0
f(0) = 1
Vậy lim f(x) = f(0) ?hàm số liên tục
x? 0 tại x = 0.
Do đó f(x) liên tục trên toàn trục số
Giải: với x ? 0? f(x) là các hàm đa thức nên nó liên tục
với x= 0
lim f(x) = lim (2x2-3x+1) = 1
x? 0+ x? 0+
lim f(x) = lim (1-x2) = 1
x? 0- x? 0-
f(0) = 1
Vậy lim f(x) = lim f(x)= f(0)
x? 0+ x->0-
?hàm số liên tục tại x = 0.
Do đó f(x) liên tục trên toàn trục số
3/4
Đáp án :
1. a = 0
2. a = 1
3. a = -2
4. không có giá trị nào của a
thoả mãn đề bài.
Hệ quả:
Nếu hàm số f(x) là liên tục trên đoạn [a;b] và f(a).f(b) < 0 thì tồn tại ít nhất một điểm c ? (a;b) sao cho f(c) = 0.

Nói cách khác:
Nếu hàm số f(x) là liên tục trên đoạn [a;b] và f(a).f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm trên khoảng (a;b).
Hãy xét sự liên tục của hàm số tại x = 0
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Phạm Lê Duy
Dung lượng: | Lượt tài: 0
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)