Bai tap

Chia sẻ bởi Nguyễn Đức Thiện | Ngày 02/05/2019 | 26

Chia sẻ tài liệu: bai tap thuộc Bài giảng khác

Nội dung tài liệu:

HÌNH CHÓP , KHỐI CHÓP
I. Hình chóp :
1. Định nghĩa :


Hình chóp tứ giác S.ABCD .
2. Hình chóp đều :

Hình chóp tứ giác đều S.ABCD
II. Khối chóp :
Khối chóp là khối đa diện giới hạn bởi một hình chóp . Ta có khối chóp n-giác , khối tứ diện ,
khối chóp n-giác đều ...
III. Thể tích khối chóp : 

BÀI TẬP
Tính thể tích khối tứ diện đều có cạnh là a .
Tính thể tích khối chóp tứ giác đều có cạnh bên và cạnh đáy cùng bằng a .
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , SA vuông góc mp(ABCD) , cạnh SC tạo với mặt phẳng đáy góc 300. Tính thể tích khối chóp .
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác vuông tại B , cạnh bên SA vuông góc với đáy . Biết SA = BC = a . Mặt bên SBC tạo với đáy góc 300. Tính thể tích khối chóp S.ABC .
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , SA vuông góc mp(ABCD) , cạnh bên SB = . Tính thể tích khối chóp S.ABCD và chứng minh trung điểm I của SC là tâm mặt cầu ngoại tiếp hình chóp S.ABCD .
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a , cạnh bên bằng 2a . Gọi I là trung điểm cạnh BC . Chứng minh SA vuông góc với BC và tính thể tích khối chóp S.ABI theo a .
Cho hình chóp S.ABCD có đáy là hình chữ nhật và AB = 2a , BC = a . Các cạnh bên hình chóp đều bằng nhau và bằng  . Tính thể tích khối chóp S.ABCD .
Cho hình chóp S.ABC có SA = SB = SC = a , góc ASB là 1200, góc BSC là 600, góc CSA là 900. Chứng minh tam giác ABC vuông và tính thể tích khối chóp S.ABC .
Cho tứ diện OABC có OA = a , OB = b , OC = c và vuông góc nhau từng đôi .Tính thể tích khối tứ diện OABC và diện tích tam giác ABC .
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy là a . Tam giác SAC là tam giác đều . Tính thể tích khối chóp S.ABCD .


BÀI TẬP HÌNH CHÓP , KHỐI CHÓP (TIẾP)
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại A , AB = a , mặt bên SBC vuông góc với (ABC) , hai mặt bên còn lại cùng tạo với (ABC) góc 450. Chứng minh chân đường cao H của hình chóp là trung điểm BC và tính thể tích khối chóp S.ABC .
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , SA vuông góc (ABCD) và SA = a . Tính khoảng cách giữa hai đường thẳng SB và CD và khoảng cách từ A đến (SCD) .
Cho khối chóp S.ABC có đường cao SA bằng a , đáy là tam giác vuông cân có AB = BC = a . Gọi B’ là trung điểm SB , C’ là chân đường cao hạ từ A của tam giác SAC . Chứng minh SC vuông góc với mp(AB’C’) và tính thể tích khối chóp S.AB’C’ .
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a , SA = 2a và SA vuông góc mp(ABC) . Gọi M , N lần lượt là hình chiếu vuông góc của A lên SB , SC . Tính thể tích khối chóp A.BCMN.
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a , cạnh bên SA vuông góc với đáy . Tính khoảng cách từ A đến (SBC) biết SA =.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , SA vuông góc (ABCD) và SA = a . Gọi E là trung điểm CD . Tính khoảng cách từ S đến đường thẳng BE .
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân với cạnh huyền BC = a . Góc giữa hai mặt phẳng (ABC) và (SBC) là 600. Tính thể tích khối chóp S.ABC.
Tính thể tích khối tứ diện ABCD biết AB = a , AC = b , AD = c và các góc BAC , CAD , DAB đều bằng 600.
Cho hình tứ diện đều ABCD cạnh a . Hãy xác định và tính độ dài đoạn vuông góc chung của hai đường thẳng AD và BC .
Cho tứ diện ABCD với AB = AC = a , BC = b . Hai mp(BCD) và mp(ABC) vuông góc nhau và góc BDC là 900. Xác định tâm và bán kính mặt cầu ngoại tiếp tứ diện ABCD theo a , b .
Cho hình chóp S.ABC có đáy ABC là tam
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Đức Thiện
Dung lượng: | Lượt tài: 0
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)