Bài 7. Sai số của phép đo các đại lượng vật lí
Chia sẻ bởi thành công |
Ngày 25/04/2019 |
124
Chia sẻ tài liệu: Bài 7. Sai số của phép đo các đại lượng vật lí thuộc Vật lý 10
Nội dung tài liệu:
Phần thứ hai
MỘT SỐ BÀI THÍ NGHIỆM THỰC HÀNH MÔN VẬT LÍ THPT
Bài thực hành mở đầu
TÍNH SAI SỐ VÀ XỬ LÍ SỐ LIỆU
I. Mục đích
Rèn luyện kỹ năng tính giá trị trung bình và sai số của đại lượng vật lí được đo trực tiếp.
Vận dụng thành thạo các phương pháp tính sai số của đại lượng đo gián tiếp.
Từ bảng số liệu thực nghiệm, học sinh cần nắm vững phương pháp xử lí số liệu để tính giá trị trung bình và sai số của đại lượng đo gián tiếp.
Nắm vững và thành thạo quy tắc làm tròn số và viết kết quả đo đại lượng vật lí.
II. Cơ sở lí thuyết
2.1. Định nghĩa phép tính về sai số
Các khái niệm
a. Phép đo trực tiếp: Đo một đại lượng vật lí có nghĩa là so sánh nó với một đại lượng cùng loại mà ta chọn làm đơn vị
b. Phép đo gián tiếp: Trường hợp giá trị của đại lượng cần đo được tính từ giá trị của các phép đo trực tiếp khác thông qua biểu thức toán học, thì phép đo đó là phép đo gián tiếp
Phân loại sai số
Khi đo một đại lượng vật lí, dù đo trực tiếp hay gián tiếp, bao giờ ta cũng mắc phải sai số. Người ta chia thành hai loại sai số như sau:
a. Sai số hệ thống:
Sai số hệ thống xuất hiện do sai sót của dụng cụ đo hoặc do phương pháp lí thuyết chưa hoàn chỉnh, chưa tính đến các yếu tố ảnh hưởng đến kết quả đo. Sai số hệ thống thường làm cho kết quả đo lệch về một phía so với giá trị thực của đại lượng cần đo. Sai số hệ thống có thể loại trừ được bằng cách kiểm tra, điều chỉnh lại các dụng cụ đo, hoàn chỉnh phương pháp lí thuyết đo, hoặc đưa vào các số hiệu chỉnh.
b. Sai số ngẫu nhiên:
Sai số ngẫu nhiên sinh ra do nhiều nguyên nhân, ví dụ do hạn chế của giác quan người làm thí nghiệm, do sự thay đổi ngẫu nhiên không lường trước được của các yếu tố gây ảnh hưởng đến kết quả đo. Sai số ngẫu nhiên làm cho kết quả đo lệch về cả hai phía so với giá trị thực của đại lượng cần đo. Sai số ngẫu nhiên không thể loại trừ được. Trong phép đo cần phải đánh giá sai số ngẫu nhiên.
2.2. Phương pháp xác định sai số của phép đo trực tiếp
a) Phương pháp chung xác định giá trị trung bình và sai số ngẫu nhiên
Giả sử đại lượng cần đo A được đo n lần. Kết quả đo lần lượt là Đại lượng (1)
được gọi là giá trị trung bình của đại lượng A trong n lần đo. Số lần đo càng lớn, giá trị trung bình càng gần với giá trị thực A. Các đại lượng:
được gọi là sai số tuyệt đối trong mỗi lần đo riêng lẻ. Để đánh giá sai số của phép đo đại lượng A, người ta dùng sai số toàn phương trung bình. Theo lí thuyết xác suất, sai số toàn phương trung bình là: (2)
và kết quả đo đại lượng A được viết: (3)
Như vậy, giá trị thực của đại lượng A với một xác suất nhất định sẽ nằm trong khoảng từ đến , nghĩa là:
-
Khoảng [( -),()] gọi là khoảng tin cậy. Sai số toàn phương trung bình chỉ được dùng với các phép đo đòi hỏi độ chính xác cao và số lần đo n lớn. Nếu đo đại lượng A từ 5 đến 10 lần, thì ta dùng sai số tuyệt đối trung bình số học (sai số ngẫu nhiên) được định nghĩa như sau:
= (4)
Kết quả đo lúc này được viết dưới dạng: = (5)
Ngoài sai số tuyệt đối, người ta còn sử dụng sai số tỉ đối được định nghĩa như sau:
= (6)
Kết quả đo được viết như sau: (7)
Như vậy, cách viết kết quả phép đo trực tiếp như sau:
- Tính giá trị trung bình theo công thức (1)
- Tính các sai số theo công thức (4) hoặc (6).
- Kết quả đo được viết như (5) hoặc (7).
Ví dụ: Đo đường kính viên bi 4 lần, ta có kết quả sau:
Giá trị trung bình của đường kính viên bi là:
=
Sai số tuyệt đối trung bình tính được là
=
Kết quả:
b) Cách xác định sai số dụng cụ
● Mỗi dụng cụ có một độ chính xác nhất định. Nếu dùng dụng cụ này để đo một đại lượng vật lí nào đó thì đương nhiên sai số nhận
MỘT SỐ BÀI THÍ NGHIỆM THỰC HÀNH MÔN VẬT LÍ THPT
Bài thực hành mở đầu
TÍNH SAI SỐ VÀ XỬ LÍ SỐ LIỆU
I. Mục đích
Rèn luyện kỹ năng tính giá trị trung bình và sai số của đại lượng vật lí được đo trực tiếp.
Vận dụng thành thạo các phương pháp tính sai số của đại lượng đo gián tiếp.
Từ bảng số liệu thực nghiệm, học sinh cần nắm vững phương pháp xử lí số liệu để tính giá trị trung bình và sai số của đại lượng đo gián tiếp.
Nắm vững và thành thạo quy tắc làm tròn số và viết kết quả đo đại lượng vật lí.
II. Cơ sở lí thuyết
2.1. Định nghĩa phép tính về sai số
Các khái niệm
a. Phép đo trực tiếp: Đo một đại lượng vật lí có nghĩa là so sánh nó với một đại lượng cùng loại mà ta chọn làm đơn vị
b. Phép đo gián tiếp: Trường hợp giá trị của đại lượng cần đo được tính từ giá trị của các phép đo trực tiếp khác thông qua biểu thức toán học, thì phép đo đó là phép đo gián tiếp
Phân loại sai số
Khi đo một đại lượng vật lí, dù đo trực tiếp hay gián tiếp, bao giờ ta cũng mắc phải sai số. Người ta chia thành hai loại sai số như sau:
a. Sai số hệ thống:
Sai số hệ thống xuất hiện do sai sót của dụng cụ đo hoặc do phương pháp lí thuyết chưa hoàn chỉnh, chưa tính đến các yếu tố ảnh hưởng đến kết quả đo. Sai số hệ thống thường làm cho kết quả đo lệch về một phía so với giá trị thực của đại lượng cần đo. Sai số hệ thống có thể loại trừ được bằng cách kiểm tra, điều chỉnh lại các dụng cụ đo, hoàn chỉnh phương pháp lí thuyết đo, hoặc đưa vào các số hiệu chỉnh.
b. Sai số ngẫu nhiên:
Sai số ngẫu nhiên sinh ra do nhiều nguyên nhân, ví dụ do hạn chế của giác quan người làm thí nghiệm, do sự thay đổi ngẫu nhiên không lường trước được của các yếu tố gây ảnh hưởng đến kết quả đo. Sai số ngẫu nhiên làm cho kết quả đo lệch về cả hai phía so với giá trị thực của đại lượng cần đo. Sai số ngẫu nhiên không thể loại trừ được. Trong phép đo cần phải đánh giá sai số ngẫu nhiên.
2.2. Phương pháp xác định sai số của phép đo trực tiếp
a) Phương pháp chung xác định giá trị trung bình và sai số ngẫu nhiên
Giả sử đại lượng cần đo A được đo n lần. Kết quả đo lần lượt là Đại lượng (1)
được gọi là giá trị trung bình của đại lượng A trong n lần đo. Số lần đo càng lớn, giá trị trung bình càng gần với giá trị thực A. Các đại lượng:
được gọi là sai số tuyệt đối trong mỗi lần đo riêng lẻ. Để đánh giá sai số của phép đo đại lượng A, người ta dùng sai số toàn phương trung bình. Theo lí thuyết xác suất, sai số toàn phương trung bình là: (2)
và kết quả đo đại lượng A được viết: (3)
Như vậy, giá trị thực của đại lượng A với một xác suất nhất định sẽ nằm trong khoảng từ đến , nghĩa là:
-
Khoảng [( -),()] gọi là khoảng tin cậy. Sai số toàn phương trung bình chỉ được dùng với các phép đo đòi hỏi độ chính xác cao và số lần đo n lớn. Nếu đo đại lượng A từ 5 đến 10 lần, thì ta dùng sai số tuyệt đối trung bình số học (sai số ngẫu nhiên) được định nghĩa như sau:
= (4)
Kết quả đo lúc này được viết dưới dạng: = (5)
Ngoài sai số tuyệt đối, người ta còn sử dụng sai số tỉ đối được định nghĩa như sau:
= (6)
Kết quả đo được viết như sau: (7)
Như vậy, cách viết kết quả phép đo trực tiếp như sau:
- Tính giá trị trung bình theo công thức (1)
- Tính các sai số theo công thức (4) hoặc (6).
- Kết quả đo được viết như (5) hoặc (7).
Ví dụ: Đo đường kính viên bi 4 lần, ta có kết quả sau:
Giá trị trung bình của đường kính viên bi là:
=
Sai số tuyệt đối trung bình tính được là
=
Kết quả:
b) Cách xác định sai số dụng cụ
● Mỗi dụng cụ có một độ chính xác nhất định. Nếu dùng dụng cụ này để đo một đại lượng vật lí nào đó thì đương nhiên sai số nhận
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: thành công
Dung lượng: |
Lượt tài: 3
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)