15 bai toan on thi vao lop 10

Chia sẻ bởi Nguyễn Yến | Ngày 18/10/2018 | 60

Chia sẻ tài liệu: 15 bai toan on thi vao lop 10 thuộc Hình học 9

Nội dung tài liệu:

Bài 1: Cho (ABC có các đường cao BD và CE.Đường thẳng DE cắt đường tròn ngoại tiếp tam giác tại hai điểm M và N.
Chứng minh:BEDC nội tiếp.
Chứng minh: góc DEA=ACB.
Chứng minh: DE // với tiếp tuyến tai A của đường tròn ngoại tiếp tam giác.
Gọi O là tâm đường tròn ngoại tiếp tam giác ABC.Chứng minh: OA là phân giác của góc MAN.
Chứng tỏ: AM2=AE.AB.
Bài 2:
Cho(O) đường kính AC.trên đoạn OC lấy điểm B và vẽ đường tròn tâm O’, đường kính BC.Gọi M là trung điểm của đoạn AB.Từ M vẽ dây cung DE vuông góc với AB;DC cắt đường tròn tâm O’ tại I.
1.Tứ giác ADBE là hình gì?
2.C/m DMBI nội tiếp.
3.C/m B;I;C thẳng hàng và MI=MD.
4.C/m MC.DB=MI.DC
5.C/m MI là tiếp tuyến của (O’)
Bài 3:
Cho (ABC có góc A=1v.Trên cạnh AC lấy điểm M sao cho AM>MC.Dựng đường tròn tâm O đường kính MC;đường tròn này cắt BC tại E.Đường thẳng BM cắt (O) tại D và đường thẳng AD cắt (O) tại S.
C/m ADCB nội tiếp.
C/m ME là phân giác của góc AED.
C/m: Góc ASM=ACD.
Chứng tỏ ME là phân giác của góc AED.
C/m ba đường thẳng BA;EM;CD đồng quy.
Bài 4:
Cho tam giác ABC có 3 góc nhọn và ABC/m AEDB nội tiếp.
C/m DB.A’A=AD.A’C
C/m:DE(AC.
Gọi M là trung điểm BC.Chứng minh MD=ME=MF.
Bài 5:
Cho (O) đường kính BC,điểm A nằm trên cung BC.Trên tia AC lấy điểm D sao cho AB=AD.Dựng hình vuông ABED;AE cắt (O) tại điểm thứ hai F;Tiếp tuyến tại B cắt đường thẳng DE tại G.
C/m BGDC nội tiếp.Xác định tâm I của đường tròn này.
C/m (BFC vuông cân và F là tâm đường tròn ngoại tiếp (BCD.
C/m GEFB nội tiếp.
Chứng tỏ:C;F;G thẳng hàng và G cũng nằm trên đường tròn ngoại tiếp (BCD.Có nhận xét gì về I và F
Bài 6:
Cho (ABC có 3 góc nhọn nội tiếp trong (O).Tiếp tuyến tại B và C của đường tròn cắt nhau tại D.Từ D kẻ đường thẳng song song với AB,đường này cắt đường tròn ở E và F,cắt AC ở I(E nằm trên cung nhỏ BC).
C/m BDCO nội tiếp.
C/m: DC2=DE.DF.
C/m:DOIC nội tiếp.
Chứng tỏ I là trung điểm FE.
Bài 7:
Cho (O),dây cung AB.Từ điểm M bất kỳ trên cung AB(M(A và M(B),kẻ dây cung MN vuông góc với AB tại H.Gọi MQ là đường cao của tam giác MAN.
C/m 4 điểm A;M;H;Q cùng nằm trên một đường tròn.
C/m:NQ.NA=NH.NM
C/m Mn là phân giác của góc BMQ.
Hạ đoạn thẳng MP vuông góc với BN;xác định vị trí của M trên cung AB để MQ.AN+MP.BN có giác trị lớn nhất.
Bài 8:
Cho (O;R) và (I;r) tiếp xúc ngoài tại A (R> r) .Dựng tiếp tuyến chung ngoài BC (B nằm trên đường tròn tâm O và C nằm trên đư ờng tròn tâm (I).Tiếp tuyến BC cắt tiếp tuyến tại A của hai đường tròn ở E.
1/ Chứng minh tam giác ABC vuông ở A.
2/ O E cắt AB ở N ; IE cắt AC tại F .Chứng minh N;E;F;A cùng nằm trên một đường tròn .
3/ Chứng tỏ : BC2= 4 Rr
4/ Tính diện tích tứ giác BCIO theo R;r
Bài 9:
Cho (O) đường kính AB và dây CD vuông góc với AB tại F.Trên cung BC lấy điểm M.Nối A với M cắt CD tại E.
C/m
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Yến
Dung lượng: | Lượt tài: 4
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)